Vector Products

1°. Scalar Product

The *scalar product* of nonzero vectors \vec{a} and \vec{b} is a number equal to the product of the lengths of these vectors by the cosine of the angle between them. If at least one of the factors is a zero vector, the scalar product is considered to be zero.

The scalar product is denoted as (\vec{a}, \vec{b}) . Then, by definition,

$$(a,b) = |a| |b| \cos \varphi; 0 \le \varphi \le \pi$$

where ϕ is the angle between the factor vectors.

Properties of the scalar product

- 1°/ $(\vec{a}, \vec{b}) = 0$ with $\vec{a} \neq \vec{o}$ and $\vec{b} \neq \vec{o}$? if \vec{a} and \vec{b} are mutually orthogonal,
- 2°. $(\vec{a}, \vec{b}) = (\vec{b}, \vec{a})$ (commutativity),
- 3°. $(\lambda_1 \vec{a_1} + \lambda_2 \vec{a_2}, \vec{b}) = \lambda_1 (\vec{a_1}, \vec{b}) + \lambda_2 (\vec{a_2}, \vec{b})$ (linearity)

4°.
$$(\overrightarrow{a}, \overrightarrow{a}) = |\overrightarrow{a}|^2 \ge 0 \quad \forall \overrightarrow{a}; \quad |\overrightarrow{a}| = \sqrt{(\overrightarrow{a}, \overrightarrow{a})},$$

(conditions: (a, a) = 0 and a = o are equivalent),

5°. For
$$\vec{a} \neq \vec{o}$$
 and $\vec{b} \neq \vec{o}$ $\cos \varphi = \frac{(\vec{a}, \vec{b})}{|\vec{a}||\vec{b}|}$

2°. Vector product

A vector product of non-collinear vectors \vec{a} and \vec{b} a vector \vec{c} such that

- 1°. $|\vec{c}| = |\vec{a}| |\vec{b}| \sin \varphi$, where is the angle between the vectors $\vec{a}, \vec{b}; 0 < \varphi < \pi$.
- 2°. The vector \vec{c} is orthogonal to the vector \vec{a} and the vector \vec{b} .
- 3°. The triple of vectors $\{\vec{a}, \vec{b}, \vec{c}\}$ is right-oriented.

In the case where the factors are collinear, the vector product is considered equal to the zero vector.

The vector product is denoted as $[\vec{a}, \vec{b}]$.

Properties of vector product

- 1°. $\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix}$ is equal to the area of the parallelogram constructed on vectors \vec{a} and \vec{b} .
- 2°. For nonzero vectors \vec{a} and \vec{b} to be collinear, it is necessary and sufficient that their vector product be equal to the zero vector.
- 3°. $[\vec{a}, \vec{b}] = -[\vec{b}, \vec{a}]$ (anticommutativity)

4°.
$$[\lambda \vec{a}, \vec{b}] = \lambda [\vec{a}, \vec{b}].$$

5°. $[\vec{a} + \vec{b}, \vec{c}] = [\vec{a}, \vec{c}] + [\vec{b}, \vec{c}]$ (distributivity).

3°. Mixed product

The *mixed* (or *vector-scalar*) product of vectors \vec{a} , \vec{b} and \vec{c} , denoted as $(\vec{a}, \vec{b}, \vec{c})$, is the number $([\vec{a}, \vec{b}], \vec{c})$.

Properties of the mixed product

1°. The absolute value of the mixed product $(\vec{a}, \vec{b}, \vec{c})$ is equal to the volume of the parallelepiped constructed on the vectors \vec{a} , \vec{b} and \vec{c} . The sign of the mixed product is positive if the triple of \vec{a} , \vec{b} , \vec{c} is right-oriented, and negative if it is left-oriented.

2°.
$$(\vec{a}, \vec{b}, \vec{c}) = (\vec{c}, \vec{a}, \vec{b}) = (\vec{b}, \vec{c}, \vec{a}) = -(\vec{b}, \vec{a}, \vec{c}) = -(\vec{c}, \vec{b}, \vec{a}) = -(\vec{a}, \vec{c}, \vec{b})$$
;

3°.
$$(\lambda \vec{a}, \vec{b}, \vec{c}) = \lambda(\vec{a}, \vec{b}, \vec{c});$$

4°.
$$(\vec{a_1} + \vec{a_2}, \vec{b}, \vec{c}) = (\vec{a_1}, \vec{b}, \vec{c}) + (\vec{a_2}, \vec{b}, \vec{c})$$
,

The mixed product is equal to zero if there is at least one collinear pair among the factors.

4° Double vector product

The *double vector product* of vectors \vec{a} , \vec{b} and \vec{c} is called the vector $[\vec{a} \ \vec{b} \ \vec{c}]]$.

Property of the double vector product

$$\begin{bmatrix} \vec{a}, [\vec{b}, \vec{c}] \end{bmatrix} = \vec{b}(\vec{a}, \vec{c}) - \vec{c}(\vec{a}, \vec{b})$$

Task 4.01 What angle do vectors \vec{a} and \vec{b} form if it is known that $\vec{a}+2\vec{b}$ and $5\vec{a}-4\vec{b}$ are orthogonal?

Solution

If vectors $\vec{a} + 2\vec{b}$ and $5\vec{a} - 4\vec{b}$ are orthogonal, then their scalar product is zero. Taking into account the commutativity of the scalar product and the conditions $\left| \vec{a} \right| = \left| \vec{b} \right| = 1$ we have $0 = (\vec{a} + 2\vec{b}, 5\vec{a} - 4\vec{b}) = 5(\vec{a}, \vec{a}) - 4(\vec{a}, \vec{b}) + 10(\vec{b}, \vec{a}) - 8(\vec{b}, \vec{b}) =$ $= 5\left| \vec{a} \right|^2 + 6(\vec{a}, \vec{b}) - 8\left| \vec{b} \right|^2 = 6(\vec{a}, \vec{b}) - 3.$ Since $(\vec{a}, \vec{b}) = \frac{1}{2}$ and $\cos \varphi = \frac{1}{2} \implies \varphi = \frac{\pi}{3}.$

Task .4.02Show that the vector product of a pair of vectors does not change if a vector
collinear to the first factor is added to the second factor.

Solution

Let
$$[\vec{a}, \vec{b}]$$
 and $\vec{c} = \vec{b} + \lambda \vec{a}$ be given. For $[\vec{a}, \vec{c}]$ we have
 $[\vec{a}, \vec{c}] = [\vec{a}, \vec{b} + \lambda \vec{a}] = [\vec{a}, \vec{b}] + \lambda [\vec{a}, \vec{a}] = [\vec{a}, \vec{b}],$
since $[\vec{a}, \vec{a}] = \vec{o}$.

Solution is found

Note that we have also shown that it is impossible to uniquely indicate the second factor for a vector product and one of its factors.

Task 4.03

Find a vector \vec{x} lying in the plane of vectors \vec{a} and \vec{b} if $\begin{cases} \vec{a}, \vec{x} = \alpha, \\ \vec{b}, \vec{x} = \beta, \end{cases}$

and vectors \vec{a} and \vec{b} are non-collinear.

Solution

Vectors \vec{a} and \vec{b} form a basis in their plane. Therefore, vector \vec{x} can be (and uniquely) expanded in this basis

$$\vec{x} = \xi \vec{a} + \eta \vec{b}$$
.

We can find the expansion coefficients from the system of equations

$$\begin{cases} \vec{a}, \vec{a}, \vec{b}, \vec{b}, \vec{a}, \vec{b}, \vec{h}, \vec{h}, \vec{b}, \vec{h}, \vec{$$

Task 4.04

Find vector
$$\vec{x}$$
 if

$$\begin{cases} \vec{a}, \vec{x} = \alpha, \\ \vec{b}, \vec{x} = \beta, \\ \vec{c}, \vec{x} = \gamma, \end{cases}$$

and the vectors a, b and c are not coplanar.

Solution

The vectors \vec{a} , \vec{b} and \vec{c} are linearly independent, so the vectors $[\vec{a}, \vec{b}]$, $[\vec{b}, \vec{c}]$ and $[\vec{c}, \vec{a}]$ are also linearly independent. Therefore, they form a basis in space and vector \vec{x} can be (and uniquely) expanded in this basis

$$\vec{x} = \xi[\vec{a}, \vec{b}] + \eta[\vec{b}, \vec{c}] + \kappa[\vec{c}, \vec{a}]$$

We can find the expansion coefficients from the system of equations

$$\begin{cases} \vec{a}, \vec{a}, \vec{b}, \vec{b}, \vec{c} + (\vec{a}, \vec{b}, \vec{c}, \vec{n}) + (\vec{a}, \vec{c}, \vec{a}, \vec{k}) \kappa = \alpha ,\\ \vec{b}, \vec{a}, \vec{b}, \vec{b}, \vec{c} + (\vec{b}, \vec{b}, \vec{c}, \vec{n}) + (\vec{b}, \vec{c}, \vec{a}, \vec{k}) \kappa = \beta ,\\ \vec{c}, \vec{a}, \vec{b}, \vec{b}, \vec{c} + (\vec{c}, \vec{b}, \vec{c}, \vec{n}) + (\vec{c}, \vec{c}, \vec{a}, \vec{k}) \kappa = \gamma , \end{cases}$$

which, by the properties of the mixed product, is equivalent to the system

$$\begin{cases} \vec{a}, \vec{b}, \vec{c}, \eta = \alpha ,\\ \vec{a}, \vec{b}, \vec{c}, \eta \in \alpha ,\\ \vec{b}, \vec{c}, \vec{a}, \kappa \in \beta ,\\ \vec{c}, \vec{a}, \vec{b}, \xi = \gamma . \end{cases}$$

Test 4.05

Find all vectors
$$\vec{x}$$
 satisfying the relation
 $[\vec{a}, \vec{x}] + [\vec{x}, \vec{b}] = [\vec{a}, \vec{b}],$
if vectors \vec{a} and \vec{b} are non-collinear.

Решение

We multiply both sides of this equation scalarly by \vec{b} , we get

$$([\vec{a},\vec{x}],\vec{b}) + ([\vec{x},\vec{b}],\vec{b}) = ([\vec{a},\vec{b}],\vec{b})$$
 or $(\vec{a},\vec{x},\vec{b}) + (\vec{x},\vec{b},\vec{b}) = (\vec{a},\vec{b},\vec{b})$.

According to the properties of the mixed product $(\vec{x}, \vec{b}, \vec{b}) = (\vec{a}, \vec{b}, \vec{b}) = 0$, that is $(\vec{a}, \vec{x}, \vec{b}) = 0$. This means that vectors \vec{a}, \vec{x} and \vec{b} are coplanar and linearly dependent

In this case, the vector \vec{x} can be represented as a linear combination of vectors \vec{a} and \vec{b} . Therefore, $\vec{x} = \alpha \vec{a} + \beta \vec{b}$.

Now we find at what values of α and β the vector $\vec{x} = \alpha \vec{a} + \beta \vec{b}$ will satisfy the original relation. Substituting, we get

$$\begin{bmatrix} \vec{a}, \vec{x} \end{bmatrix} + \begin{bmatrix} \vec{x}, \vec{b} \end{bmatrix} = \begin{bmatrix} \vec{a}, \alpha \ \vec{a} + \beta \ \vec{b} \end{bmatrix} + \begin{bmatrix} \alpha \ \vec{a} + \beta \ \vec{b}, \vec{b} \end{bmatrix} =$$
$$= \alpha \begin{bmatrix} \vec{a}, \vec{a} \end{bmatrix} + \beta \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} + \alpha \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} + \beta \begin{bmatrix} \vec{b}, \vec{b} \end{bmatrix} = (\alpha + \beta) \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix},$$

that is, it is necessary that $\alpha + \beta = 1$. Therefore $\vec{x} = \alpha \vec{a} + (1 - \alpha) \vec{b}$, $\forall \alpha$.

Task 4.06

Find vector \vec{x} from a system of equations $\begin{cases} \vec{a}, \vec{x} \end{bmatrix} = \vec{b}, \\ \vec{c}, \vec{x} \end{bmatrix} = \alpha, \\
subject to \ \vec{c}, \vec{a} \end{pmatrix} \neq 0$

Solution

We multiply both sides of the first equation vectorially from the left by \vec{c} . Then we use the property of double vector product. We get

$$[\vec{c}, [\vec{a}, \vec{x}]] = \vec{a}(\vec{c}, \vec{x}) - \vec{x}(\vec{c}, \vec{a}) = [\vec{c}, \vec{b}]$$
$$\alpha \vec{a} - \vec{x}(\vec{c}, \vec{a}) = [\vec{c}, \vec{b}],$$

since due to the second equation of the system there will be $(\vec{c}, \vec{x}) = \alpha$.

Where we finally get

$$\vec{x} = \frac{\vec{\alpha} \cdot \vec{a} - \vec{c} \cdot \vec{b}}{\vec{c} \cdot \vec{a}}.$$