Vector Products

1°. Scalar Product

The scalar product of nonzero vectors \overrightarrow{a} and \overrightarrow{b} is a number equal to the product of the lengths of these vectors by the cosine of the angle between them. If at least one of the factors is a zero vector, the scalar product is considered to be zero.

The scalar product is denoted as $\overrightarrow{(a,b)}$. Then, by definition,

 \overrightarrow{a} , \overrightarrow{b} = | \overrightarrow{a} || \overrightarrow{b} | cos φ ; $0 \le \varphi \le \pi$

where φ is the angle between the factor vectors.

Properties of the scalar product

- \overrightarrow{a} (\overrightarrow{a} , \overrightarrow{b}) = 0 with $\overrightarrow{a} \neq \overrightarrow{0}$ and $\overrightarrow{b} \neq \overrightarrow{0}$? if \overrightarrow{a} and \overrightarrow{b} are mutually orthogonal,
- \overrightarrow{a} (\overrightarrow{a} , \overrightarrow{b}) (commutativity),
- $\lambda_1 a_1 + \lambda_2 a_2, b$ = $\lambda_1(a_1, b) + \lambda_2(a_2, b)$ $\overrightarrow{\lambda_1} \overrightarrow{a_1 + \lambda_2} \overrightarrow{a_2}, \overrightarrow{b} = \lambda_1(\overrightarrow{a_1}, \overrightarrow{b}) + \lambda_2(\overrightarrow{a_2}, \overrightarrow{b})$ (linearity)

4°.
$$
(\vec{a}, \vec{a}) = |\vec{a}|^2 \ge 0 \ \forall \vec{a}; \ |\vec{a}| = \sqrt{(\vec{a}, \vec{a})},
$$

\n(conditions: $(\vec{a}, \vec{a}) = 0$ and $\vec{a} = \vec{o}$ are equivalent),

5°. For
$$
\vec{a} \neq \vec{0}
$$
 and $\vec{b} \neq \vec{0}$ $\cos \varphi = \frac{(\vec{a}, \vec{b})}{|\vec{a}||\vec{b}|}$

2°. Vector product

A vector product of non-collinear vectors \overrightarrow{a} and \overrightarrow{b} a vector \overrightarrow{c} such that

- 1°. $|\vec{c}| = |\vec{a}| |\vec{b}| \sin \varphi$, where is the angle between the vectors \vec{a}, \vec{b} ; $0 < \varphi < \pi$.
- 2^o. The vector \overrightarrow{c} is orthogonal to the vector \overrightarrow{a} and the vector \overrightarrow{b} .
- 3^o. The triple of vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} is right-oriented.

In the case where the factors are collinear, the vector product is considered equal to the zero vector.

The vector product is denoted as $\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix}$

Properties of vector product

- $\begin{vmatrix} \vec{a}, \vec{b} \end{vmatrix}$ is equal to the area of the parallelogram constructed on vectors \vec{a} and \vec{b}
- For nonzero vectors \overrightarrow{a} and \overrightarrow{b} to be collinear, it is necessary and sufficient that their vector product be equal to the zero vector.
- $\overrightarrow{[a,b]} = \overrightarrow{b,a}$ (anticommutativity)

$$
4^{\circ} \quad [\lambda \stackrel{\rightarrow}{a}, \stackrel{\rightarrow}{b}] = \lambda [\stackrel{\rightarrow}{a}, \stackrel{\rightarrow}{b}].
$$

 $\overrightarrow{[a+b,c]} = \overrightarrow{[a,c]} + \overrightarrow{[b,c]}$ (distributivity

3°. Mixed product

The *mixed* (or *vector-scalar*) product of vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , denoted as $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$, is the number \overrightarrow{a} , \overrightarrow{b}], \overrightarrow{c}).

Properties of the mixed product

^o. The absolute value of the mixed product \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} is equal to the volume of the parallelepiped constructed on the vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} . The sign of the mixed product is positive if the triple of \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} is right-oriented, and negative if it is left-oriented.

$$
2^{\circ} \quad (\vec{a}, \vec{b}, \vec{c}) = (\vec{c}, \vec{a}, \vec{b}) = (\vec{b}, \vec{c}, \vec{a}) = -(\vec{b}, \vec{a}, \vec{c}) = -(\vec{c}, \vec{b}, \vec{a}) = -(\vec{a}, \vec{c}, \vec{b}) ;
$$

$$
3^{\circ} \quad (\lambda \stackrel{\rightarrow}{a}, \stackrel{\rightarrow}{b}, \stackrel{\rightarrow}{c}) = \lambda (\stackrel{\rightarrow}{a}, \stackrel{\rightarrow}{b}, \stackrel{\rightarrow}{c}) ;
$$

$$
4^{\circ} \quad (\overrightarrow{a_1} + \overrightarrow{a_2}, \overrightarrow{b}, \overrightarrow{c}) = (\overrightarrow{a_1}, \overrightarrow{b}, \overrightarrow{c}) + (\overrightarrow{a_2}, \overrightarrow{b}, \overrightarrow{c}).
$$

The mixed product is equal to zero if there is at least one collinear pair among the factors.

Double vector product

The *double vector product* of vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} is called the vector \overrightarrow{a} \overrightarrow{b} \overrightarrow{c}].

Property of the double vector product

$$
[\vec{a}, [\vec{b}, \vec{c}]] = \vec{b}(\vec{a}, \vec{c}) - \vec{c}(\vec{a}, \vec{b})
$$

ANALYTIC GEOMETRY Umnov A.E., Umnov E.A. Theme 04 Seminars 2024/25

Task 4.01 What angle do vectors \overrightarrow{a} and \overrightarrow{b} form if it is known that $\overrightarrow{a+2b}$ and $\overrightarrow{5a-4b}$ are orthogonal?

Solution

If vectors \overrightarrow{a} + 2b and $\overrightarrow{5}$ a + 4b are orthogonal, then their scalar product is zero. Taking into account the commutativity of the scalar product and the conditions $\begin{vmatrix} \vec{a} \\ \vec{b} \end{vmatrix} = 1$ we have $5|a| + 6(a, b) - 8|b| = 6(a, b) - 3.$ $0 = (a+2b, 5a-4b) = 5(a, a) - 4(a, b) + 10(b, a) - 8(b, b)$ $= 5|a| + 6(a,b) - 8|b| = 6(a,b) =(a+2b, 5a-4b) = 5(a, a) - 4(a, b) + 10(b, a) - 8(b, b) =$ \rightarrow $\vert \rightarrow$ \rightarrow \rightarrow $\vert \rightarrow \vert$ \rightarrow \rightarrow \rightarrow $\rightarrow\quad\rightarrow\quad\rightarrow\quad\rightarrow\quad\rightarrow\rightarrow\qquad\rightarrow\rightarrow\qquad\rightarrow\rightarrow\quad\rightarrow\rightarrow$ $a \vert + 6(a, b) - 8 \vert b \vert = 6(a, b)$ $a+2b$, $5a-4b$) = $5(a, a) - 4(a, b) + 10(b, a) - 8(b, b)$ Since 2 \overrightarrow{a} , \overrightarrow{b}) = $\frac{1}{2}$ and 2 3 $\cos \varphi = \frac{1}{2} \Rightarrow \varphi = \frac{\pi}{2}$

Task .4.02 Show that the vector product of a pair of vectors does not change if a vector collinear to the first factor is added to the second factor.

Solution

Let
$$
[\vec{a}, \vec{b}]
$$
 and $\vec{c} = \vec{b} + \lambda \vec{a}$ be given. For $[\vec{a}, \vec{c}]$ we have
\n
$$
[\vec{a}, \vec{c}] = [\vec{a}, \vec{b} + \lambda \vec{a}] = [\vec{a}, \vec{b}] + \lambda [\vec{a}, \vec{a}] = [\vec{a}, \vec{b}],
$$
\nsince $[\vec{a}, \vec{a}] = \vec{o}$.

Solution is found

Note that we have also shown that it is impossible to uniquely indicate the second factor for a vector product and one of its factors.

Task 4.03 Find a vector x lying in the plane of vectors a and b if \overline{u} \vert $\left\{ \right.$ $\left\lceil \right\rceil$ $= \beta$ $=\alpha$ \rightarrow \rightarrow \rightarrow \rightarrow $(b, x) = \beta,$ $(a, x) = \alpha,$ b, x a, x

and vectors \overrightarrow{a} and \overrightarrow{b} are non-collinear.

Solution

Vectors \overrightarrow{a} and \overrightarrow{b} form a basis in their plane. Therefore, vector \overrightarrow{x} can be (and uniquely) expanded in this basis

$$
\vec{x} = \vec{\xi} \vec{a} + \eta \vec{b} \quad .
$$

We can find the expansion coefficients from the system of equations

$$
\begin{cases}\n\rightarrow \\
\vec{a},\vec{a}\n\end{cases}\n\begin{cases}\n\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow\n\end{cases}\n\Rightarrow\n\begin{cases}\n\rightarrow \\
\rightarrow \\
\rightarrow\n\end{cases}\n\Rightarrow\n\begin{cases}\n\rightarrow \\
\rightarrow \\
\rightarrow\n\end
$$

Task 4.04 $\qquad \qquad$

Find vector
$$
\overrightarrow{x}
$$
 if
\n
$$
\begin{cases}\n\overrightarrow{a}, \overrightarrow{x} = \alpha, \\
\overrightarrow{b}, \overrightarrow{x} = \beta, \\
\overrightarrow{c}, \overrightarrow{x} = \gamma,\n\end{cases}
$$

and the vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are not coplanar.

Solution

The vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are linearly independent, so the vectors $[\overrightarrow{a}, \overrightarrow{b}]$, $[\overrightarrow{b}, \overrightarrow{c}]$ and \vec{c} , \vec{c} are also linearly independent. Therefore, they form a basis in space and vector \vec{x} can \rightarrow \rightarrow be (and uniquely) expanded in this basis

$$
\vec{x} = \xi[\vec{a}, \vec{b}] + \eta[\vec{b}, \vec{c}] + \kappa[\vec{c}, \vec{a}] .
$$

We can find the expansion coefficients from the system of equations

 (, , ,) (, , ,) (, , ,) , (, , ,) (, , ,) (, , ,) , (, , ,) (, , ,) (, , ,) , c a b c b c c c a b a b b b c b c a a a b a b c a c a

which, by the properties of the mixed product, is equivalent to the system

$$
\begin{cases}\n\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}, \overrightarrow{c}\n\end{cases}
$$
\n
$$
\begin{cases}\n\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}, \overrightarrow{c}\n\end{cases}
$$
\n
$$
\begin{cases}\n\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}, \overrightarrow{d}\n\end{cases}
$$
\n
$$
\begin{cases}\n\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{b}, \overrightarrow{c}\n\end{cases}
$$

 $Test$ 4.05

Find all vectors
$$
\overrightarrow{x}
$$
 satisfying the relation
\n
$$
[\overrightarrow{a}, \overrightarrow{x}] + [\overrightarrow{x}, \overrightarrow{b}] = [\overrightarrow{a}, \overrightarrow{b}],
$$
\nif vectors \overrightarrow{a} and \overrightarrow{b} are non-collinear.

Решение

We multiply both sides of this equation scalarly by \overrightarrow{b} , we get

$$
(\vec{[a},\vec{x}],\vec{b})+(\vec{[x},\vec{b}],\vec{b})=(\vec{[a},\vec{b}],\vec{b}) \text{ or } (\vec{a},\vec{x},\vec{b})+(\vec{x},\vec{b},\vec{b})=(\vec{a},\vec{b},\vec{b}).
$$

According to the properties of the mixed product $(\vec{x}, \vec{b}, \vec{b}) = (\vec{a}, \vec{b}, \vec{b}) = 0$, that is $(\vec{a}, \vec{x}, \vec{b}) = 0$. This means that vectors \overrightarrow{a} , \overrightarrow{x} and \overrightarrow{b} are coplanar and linearly dependent

In this case, the vector \vec{x} can be represented as a linear combination of vectors \vec{a} and \vec{b} . Therefore, $\overrightarrow{x} = \alpha \overrightarrow{a} + \beta \overrightarrow{b}$.

Now we find at what values of α and β the vector $\overrightarrow{x} = \alpha \overrightarrow{a} + \beta \overrightarrow{b}$ will satisfy the original relation. Substituting, we get

$$
[\vec{a}, \vec{x}] + [\vec{x}, \vec{b}] = [\vec{a}, \vec{\alpha} \vec{a} + \vec{\beta} \vec{b}] + [\vec{\alpha} \vec{a} + \vec{\beta} \vec{b}, \vec{b}] =
$$

= $\alpha[\vec{a}, \vec{a}] + \beta[\vec{a}, \vec{b}] + \alpha[\vec{a}, \vec{b}] + \beta[\vec{b}, \vec{b}] = (\alpha + \beta)[\vec{a}, \vec{b}] = [\vec{a}, \vec{b}],$

that is, it is necessary that $\alpha + \beta = 1$. Therefore $\overrightarrow{x} = \alpha \overrightarrow{a} + (1 - \alpha) \overrightarrow{b}$, $\forall \alpha$.

Task 4.06

Find vector
$$
\overrightarrow{x}
$$
 from a system of equations
\n
$$
\begin{cases}\n\overrightarrow{a} & \rightarrow \overrightarrow{a} \\
\overrightarrow{[a, x]} = \overrightarrow{b}, \\
\overrightarrow{c}, \overrightarrow{x} = \alpha,\n\end{cases}
$$
\nsubject to $(\overrightarrow{c}, \overrightarrow{a}) \neq 0$

Solution

We multiply both sides of the first equation vectorially from the left by \overrightarrow{c} . Then we use the property of double vector product. We get

$$
[\vec{c}, [\vec{a}, \vec{x}]] = \vec{a}(\vec{c}, \vec{x}) - \vec{x}(\vec{c}, \vec{a}) = [\vec{c}, \vec{b}]
$$

$$
\vec{a} \vec{a} - \vec{x}(\vec{c}, \vec{a}) = [\vec{c}, \vec{b}],
$$

since due to the second equation of the system there will be $(c, x) = \alpha$.

Where we finally get

$$
\vec{x} = \frac{\vec{\alpha} \vec{a} - [\vec{c}, \vec{b}]}{(\vec{c}, \vec{a})}.
$$