Lines and surfaces on the plane and in space (Theory)

Let a coordinate system on the plane $\{O, \overrightarrow{g_1}, \overrightarrow{g_2}\}$ and a numerical set Ω be given that is an interval (possibly infinite).

> We will say that a line L on the plane is defined *parametrically* by a vector function $\overrightarrow{r} = \overrightarrow{F}(\tau)$ (or in coordinate form

$$
\left\| \vec{r} \right\|_g = \left\| \frac{F_x(\tau)}{F_y(\tau)} \right\|,
$$

where $F_x(\tau)$, $F_y(\tau)$ are continuous, scalar functions of argument τ , defined for $\tau \in \Omega$), if

- 1) for any $\tau \in \Omega$ point $\overrightarrow{r} = \overrightarrow{F}(\tau)$ lies on L;
- 2) for any point $\overrightarrow{r_0}$ lying on L, there exists $\overrightarrow{r_0} \in \Omega$ such that the equality holds $\dot{\sigma}_0 = F(\tau_0)$ $\overrightarrow{r_0} = \overrightarrow{F}(\tau_0)$.

Sometimes a line on a plane is defined as an equation $G(x, y) = 0$, which is obtained by eliminating the parameter τ from the system of equations $\begin{cases} 0 & \text{if } \tau \in \Omega \\ v - F(\tau) & \text{if } \tau \in \Omega \end{cases}$ \lfloor . $\left\{ \right.$ $\Big\}$ $=F_{\nu}(\tau)$ $=F_{r}(\tau)$, (τ) (τ) y x $y = F_{y}$ $x = F$.

> 1°. A straight line, for example, is defined by a vector function $\overrightarrow{r} = \overrightarrow{r_0} + \tau \overrightarrow{a}$, where \overrightarrow{a} is the direction vector, and \vec{r}_0 is one of the points of this line. The scalar form of defining a line in this case has the form

$$
\begin{cases}\nx = x_0 + \tau a_x, \\
y = y_0 + \tau a_y, \\
\tau \in (-\infty, +\infty),\n\end{cases}
$$
\nthat is,
$$
\begin{cases}\nF_x(\tau) = x_0 + \tau a_x, \\
F_y(\tau) = y_0 + \tau a_y, \\
\tau \in (-\infty, +\infty),\n\end{cases}
$$

or $Ax + By + C = 0$, $|A| + |B| > 0$, where $G(x, y) = Ax + By + C$.

 2° . In a Cartesian *orthonormal* coordinate system, a circle of radius R with center at a point 0 $\frac{\lambda_0}{\mathcal{Y}_0}$ $\left\| \begin{array}{c} x_0 \\ y \end{array} \right\|$ in parametric form can be defined as

$$
\begin{cases} x = x_0 + R \cos \tau, \\ y = y_0 + R \sin \tau, \end{cases} \quad \tau \in [0, 2\pi),
$$

that is,

$$
\begin{cases} F_x(\tau) = x_0 + R \cos \tau, \\ F_y(\tau) = y_0 + R \sin \tau, \end{cases} \quad \tau \in [0, 2\pi),
$$

or by the equation

$$
(x - x_0)^2 + (y - y_0)^2 = R^2,
$$

where $G(x, y) = (x - x_0)^2 + (y - y_0)^2 - R^2.$

A line L is called algebraic if its equation in a Cartesian coordinate system has the form $\sum \alpha_k x^{p_k} y^{q_k} = 0$ $\sum_{k=0} \alpha_k x^{p_k} y^{q_k} =$ m k $_k x^{p_k} y^{q_k}$ $x^{p_k} y^{q_k} = 0$, where p_k and q_k are non-negative integers, and the numbers α_k are not equal to zero simultaneously.

The number $N = \max_{k=0, m]} \{ p_k + q_k \}$ is called the *order of the algebraic equation*, where the maximum is found over all k , for which $\alpha_k \neq 0$. The *smallest* of the orders of the algebraic equations defining a given algebraic line is called the order of the algebraic line.

Theorem The order of an algebraic line does not depend on the choice of coordinate system.

Proof.

Let an algebraic line L have an equation $G(x, y) = 0$ and order N in the coordinate system **EXECUTE EXECUTE THE CONDETRY** Unit Unit of λ . E., Unit ov E.A.
 EXECUTE 2024/25
 EXECUTE: The order of an algebraic line does not depend on the choice of

tem.
 EXECUTE: And an equation $G(x, y) = 0$ and order N in **ETRY** Umnov A.E., Umnov E.A. 5
 S
 S
 Coordinate system.
 Coordinate system
 Coordina 1 2 . The transition formulas have the form The value of an applicate line to solve uppens on the content of coordinate system

tem.

Let an algebraic line L have an equation $G(x, y) = 0$ and order N in the coordinate system
 $\{O, g'_1, g'_2\}$. Let us move to the coord Examples a system

alas have
 $\lim_{t \to 0} \frac{1}{2}$, $\lim_{t \to 0} \frac{1}{2}$ to sof.

Let an algebraic line L have an equation $G(x, y) = 0$ and order N in the coordinate s
 $\{O, \vec{g}_1, \vec{g}_2\}$. Let us move to the coordinate system $\{O, \vec{g}_1', \vec{g}_2'\}$. The transition formulas

the form $\begin{cases} x = \sigma_{11$

$$
\begin{cases} x = \sigma_{11} x' + \sigma_{12} y' + \beta_1, \\ y = \sigma_{21} x' + \sigma_{22} y' + \beta_2, \end{cases}
$$

the equation of the line L in the "new" coordinate system will be

$$
G(\sigma_{11}x' + \sigma_{12}y' + \beta_1, \ \sigma_{21}x' + \sigma_{22}y' + \beta_2) = 0.
$$

It follows from this that $N \geq N'$, that is, when moving to the "new" coordinate system, the order of the algebraic curve cannot increase.

the system $\{O, \overrightarrow{g_1}, \overrightarrow{g_2}\}$, we obtain $N \leq N'$ and finally $N = N'$.

Theorem is proven.

Figures on the plane can be defined using inequality-type constraints.

1°. In an *orthonormal* coordinate system, a set of conditions \lfloor \vert $\left\{ \right.$ $\left($ $+y-5\leq$ \geq \geq $5 \leq 0$ 0, 0, $x + y$ y x defines

a right isosceles triangle whose legs lie on the coordinate axes and have lengths of 5.

2°. In an *orthonormal* coordinate system, an inequality of the type $x^2 + y^2 - 4 \le 0$ defines a circle of radius 2 with center at the origin.

Lines in space

Let a spatial coordinate system $\{\overrightarrow{O}, \overrightarrow{g_1}, \overrightarrow{g_2}, \overrightarrow{g_3}\}$ be given.

ALYTIC GEOMETRY Umnov A.E., Umnov E.A. 7

Thene 07 **Seminars 2024/25**

Lines in space

Let a spatial coordinate system $\{O, \vec{g_1}, \vec{g_2}, \vec{g_3}\}$ be given.

We will say that a line L in space is defined parametrically We will say that a line L in space is defined parametrically by a vector function $\overrightarrow{r} = \overrightarrow{F}(\tau)$ (or in coordinate form

$$
\begin{array}{c} x \\ y \\ z \end{array} = \begin{vmatrix} F_x(\tau) \\ F_y(\tau) \\ F_z(\tau) \end{vmatrix},
$$

where $F_x(\tau)$, $F_y(\tau)$, $F_z(\tau)$ are continuous, scalar functions of τ , defined for $\tau \in \Omega$), if

- 1) for any $\tau \in \Omega$ point $\overrightarrow{r} = \overrightarrow{F}(\tau)$ lies on L,
- 2) for any point $\overrightarrow{r_0}$ lying on L, there exists $\tau_0 \in \Omega$, such that the equality is satisfied $r_0 = F(\tau_0)$ $\overrightarrow{r_0} = \overrightarrow{F}(\tau_0)$.

Sometimes a line in space is defined by a system of equations

$$
\begin{cases} G(x, y, z) = 0, \\ H(x, y, z) = 0, \end{cases}
$$

which is obtained by excluding the parameter τ from the relations

$$
\begin{cases}\nx = F_x(\tau), \\
y = F_y(\tau), \quad \tau \in \Omega, \\
z = F_z(\tau),\n\end{cases}
$$

or by an equivalent equation, for example, of the form

$$
G^{2}(x, y, z) + H^{2}(x, y, z) = 0.
$$

- 1°. In a Cartesian coordinate system, a second-order algebraic line $x^2 + y^2 = 0$ $\forall z$ is a straight line.
- 2°. In an *orthonormal* coordinate system, a helical line of radius R with a pitch $2\pi a$ can be specified in the following parametric form:

$$
\begin{cases}\nx = R\cos\tau, \\
y = R\sin\tau, \ \tau \in (-\infty, +\infty), \\
z = a\tau\n\end{cases}\n\quad \text{or} \quad\n\begin{cases}\nx = R\cos\frac{z}{a}, \\
y = R\sin\frac{z}{a}.\n\end{cases}
$$

Surfaces in space

Let there be a spatial coordinate system { , , , } O g g g 1 2 3 Let there be a spatial coordinate system $\{O, \overrightarrow{g_1}, \overrightarrow{g_2}, \overrightarrow{g_3}\}$ and Ω is a set of ordered pairs of numbers φ, θ , defined by the conditions: $\alpha \leq \varphi \leq \beta$, $\gamma \leq \theta \leq \delta$.

We will say that in space a surface S is defined parametrically by a vector function $\overrightarrow{r} = \overrightarrow{F}(\varphi, \theta)$ (or in coordinate form

$$
\left\{\n \begin{aligned}\n r \\
 r\n \end{aligned}\n \right\|_{g} =\n \left\|\n \begin{aligned}\n F_{x}(\varphi, \theta) \\
 F_{y}(\varphi, \theta) \\
 F_{z}(\varphi, \theta)\n \end{aligned}\n \right.
$$

where $F_x(\varphi, \theta), F_y(\varphi, \theta), F_z(\varphi, \theta)$ are continuous scalar functions of two arguments φ, θ , defined for $\varphi, \theta \in \Omega$), if

- 1) for any ordered pair of numbers $\varphi, \theta \in \Omega$ the point $\overrightarrow{r} = \overrightarrow{F}(\varphi, \theta)$ lies on S,
- 2) for any $\overrightarrow{r_0}$ point lying on S, there exists an ordered pair of numbers $\varphi_0, \theta_0 \in \Omega$, such that the equality $\overrightarrow{r_0} = \overrightarrow{F}(\varphi_0, \theta_0)$ holds.

Иногда поверхность в пространстве задается в виде уравнения $G(x, y, z) = 0$, которое получается исключением φ и θ из системы уравнений Sometimes a surface in space is defined in the form of an equation $G(x, y, z) = 0$, which is obtained by excluding φ and θ from the system of equations

$$
\begin{cases}\nx = F_x(\varphi, \theta), \\
y = F_y(\varphi, \theta), \quad \varphi, \theta \in \Omega. \\
z = F_z(\varphi, \theta).\n\end{cases}
$$

In an *orthonormal* coordinate system, a *sphere* of radius R with center at a point 0 0 0 z \mathcal{Y}_1 $\mathcal{X}_{\mathcal{A}}$ can

be parametrically defined as

$$
\begin{cases}\nx = x_0 + R \cos \varphi \sin \theta, & 0 \le \varphi < 2\pi, \\
y = y_0 + R \sin \varphi \sin \theta, & 0 \le \theta \le \pi, \\
z = z_0 + R \cos \theta,\n\end{cases}
$$

and its equation in coordinates

$$
(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = R^2.
$$

A surface S is called algebraic if its equation in a Cartesian coordinate system has the form $\sum \alpha_k x^{p_k} y^{q_k} z^{r_k} = 0$ $\sum_{k=0} \alpha_k x^{p_k} y^{q_k} z^{r_k} =$ m k $\alpha_k x^{p_k} y^{q_k} z^{r_k} = 0$, where p_k, q_k and r_k are non-negative integers, and the numbers α_k are not equal to zero simultaneously.

The number $N = \max_{k=0, m]} \{ p_k + q_k + r_k \}$ is called the *order of the algebraic equation*, where the maximum is found over all k for which $\alpha_k \neq 0$. The *smallest* of the orders of the algebraic equations defining a given algebraic surface is called the *order of the al*gebraic surface.

Theorem The order of an algebraic surface does not depend on the choice of coordinate system.