AFFINE TRANSFORMATIONS (Tasks)

We will use the following notations:

In the original coordinate system for a given point, with coordinate representation y x , the image will be a point with coordinate representation $\int_{-\infty}^{\infty}$ * y x . In a new coordinate system (if required), this point y x will have coordinate representation \int_{0}^{∞} * y x , and the coordinate representation of its image will be \int_{0}^{∞} * '' y^{\prime} x^{\prime} .

Task 10-2.01. For a straight line $3x - 2y - 2 = 0$, find its preimage under a plane transformation $\overline{\mathcal{L}}$ $\left\{ \right.$ $\left\lceil \right\rceil$ $=-x+2y =-2x+y-$ * * $2y - 3$. $2x + y - 3$, $y^* = -x + 2y$ $x^* = -2x + y$

Solution: 1) This transformation is affine, since det $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} = -3 \neq 0$ 1 2 2 1 $\det \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = -3 \neq$ $\overline{}$ $\overline{}$. It is known

that under an affine transformation, a straight line is transformed into a straight line. Therefore, the problem consists of finding the relationship between the coordinates x and y, provided that $3x^* - 2y^* - 2 = 0$.

2) Substitute the transformation formula into the image equation $3x^* - 2y^* - 2 = 0$, and obtain the desired linear relationship

$$
3(-2x+y-3)-2(-x+2y-3)-2=0 \Rightarrow 4x+y+5=0.
$$

Task 10-2.02. For a line $9x-9y-7=0$, find its image under a plane transformation $\overline{\mathcal{L}}$ $\left\{ \right.$ $\left($ $= 3x + 6y = 6y-$ * * $3x + 6y - 5$. $6y - 5$, $y^* = 3x + 6y$ $x^* = 6y$

Solution: 1) This transformation is affine, since $\det \begin{bmatrix} 8 \\ 2 \end{bmatrix} = -18 \neq 0$ 3 6 0 6 $\det \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = -18 \neq 0$. Since under an affine transformation a line goes into a line, then. this problem consists of finding the relationship between the coordinates x^* and y^* , provided that $9x - 9y - 7 = 0$.

> 2) For this, we will need the formulas for the transformation inverse to the given one. It is known that for each affine transformation there is a unique inverse and it is also affine. In our case, we will consider the formulas for this transformation as a system of linear equations with unknowns x and y .

Expressing x and y through x^* and x^* , we obtain

$$
\begin{cases}\nx = -\frac{1}{3}x^* + \frac{1}{3}y^*, \\
y = \frac{1}{6}x^* + \frac{5}{6}.\n\end{cases}
$$

3) Now substituting the formulas for the inverse transformation into the equation of the preimage $9x - 9y - 7 = 0$, we obtain the equation of the desired image

$$
9\left(-\frac{1}{3}x^* + \frac{1}{3}y^*\right) - 9\left(\frac{1}{6}x^* + \frac{5}{6}\right) - 7 = 0 \qquad \Rightarrow \qquad 9x^* - 6y^* + 58 = 0 \; .
$$

Task 10-2.03. Some affine transformation of a plane the following holds:

the image of a point
$$
\begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix}
$$
 is the point $\begin{vmatrix} 0 \\ 1 \\ 1 \end{vmatrix}$,
the image of a point $\begin{vmatrix} 0 \\ 1 \\ 1 \end{vmatrix}$ is the point $\begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}$,
the image of a point $\begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}$ is the point $\begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix}$.

Which points of the plane remain fixed under this transformation?

Solution: 1) Let the given be given by the formulas $\overline{\mathcal{L}}$ $\left\{ \right.$ $\left\lceil \right\rceil$ $= \alpha_{21}x + \alpha_{22}y +$ $= \alpha_{11} x + \alpha_{12} y +$ * * . , 21^{λ} α_{22}^{μ} β_2 $11^{\lambda + \alpha} 12^{\gamma + \mu}$ $\alpha_{21}x + \alpha_{22}y + \beta_1$ $\alpha_{11}x + \alpha_{12}y + \beta_1$ $y^* = \alpha_{21}x + \alpha_{22}y$ $x^* = \alpha_{11} x + \alpha_{12} y$. Let's find it.

> 2) From the first condition 1. 0 $1 = \alpha_{21} 0 + \alpha_{22} 0$ $0 = \alpha_{11} 0 + \alpha_{12} 0 + \beta_1$ 2 1 $_{21}$ σ α $_{22}$ σ α $_{22}$ $11^{\mathbf{0}}$ $\alpha_{12}^{\mathbf{0}}$ $\beta_{1}^{\mathbf{0}}$ $=$ $=$ $\left\lfloor \right\rfloor$ $\left\{ \right.$ \vert \Rightarrow $= \alpha_{21} 0 + \alpha_{22} 0 +$ $= \alpha_{11} 0 + \alpha_{12} 0 +$ β $_{\beta}$ $\alpha_{21}^{\text{}}0 + \alpha_{22}^{\text{}}0 + \beta$ $\alpha_{11}^{\text{}}0 + \alpha_{12}^{\text{}}0 + \beta$ From the second condition $\boldsymbol{0}$. 1 $1 = \alpha_{21} 0 + \alpha_{22} 1 + 1$ $1 = \alpha_{11} 0 + \alpha_{12} 1 + 0$, 22 12 $_{21}$ v $-\alpha_{22}$ $_{11}$ v $-\alpha_{12}$ $=$ $=$ $\left\lfloor \right\rfloor$ $\left\{ \right.$ \vert \Rightarrow $= \alpha_{21} 0 + \alpha_{22} 1 +$ $= \alpha_{11} 0 + \alpha_{12} 1 +$ α α α_{21} $0 + \alpha_{3}$ α_{11} U + α Finally, from the third condition 1. 1 , $0 = \alpha_{21} 1 + 0 \cdot 1 + 1$ $0 = \alpha_{11} 1 + 1 \cdot 1$, 22 11 21 11 $= = \mathfrak{g}$ {, \vert \Rightarrow $= \alpha_{21}1 + 0.1 +$ $= \alpha_{11} 1 + 1$. α α α α

As a result: \cup $\left\{ \right.$ $\Bigg] .$ $=-x$ + $=-x +$ * * 1. , $y^* = -x$ $x^* = -x + y$ This transformation is obviously affine.

3) Let 0 0 \mathcal{Y}_1 \mathcal{X}_t be a fixed point of the obtained transformation. Then there must be

$$
\begin{cases}\n x_0 = -x_0 + y_0, \\
 y_0 = -x_0 + 1.\n\end{cases}\n\Rightarrow\n\begin{cases}\n x_0 = \frac{1}{3}, \\
 \frac{2}{3}.\n\end{cases}
$$
 It is a *unique* fixed point.

Task 10-2.04. Find an affine transformation of the plane, under which all points of the line $x + y - 1 = 0$ are fixed, and the point 0 0 has as its image a point with coordinates 1 1 .

Solution: 1) Let the desired transformation be given by the formulas $\overline{\mathcal{L}}$ $\left\{ \right.$ $\begin{bmatrix} \\ \end{bmatrix}$ $= \alpha_{21}x + \alpha_{22}y +$ $= \alpha_{11} x + \alpha_{12} y +$ * * . , $21^{\lambda + \alpha} 22^{\lambda + \mu}$ $11^{\lambda + \alpha} 12^{\gamma + \mu}$ $\alpha_{21}x + \alpha_{22}y + \beta_2$ $\alpha_{11}x + \alpha_{12}y + \beta_1$ $y^* = \alpha_{21} x + \alpha_{22} y$ $x^* = \alpha_{11} x + \alpha_{12} y$. We immediately obtain from the conditions 1 1 0 0 \rightarrow | | that 1 1 2 $\begin{array}{c} \begin{array}{c} 1 \\ \end{array} \end{array}$ = β $\left|\frac{\beta_1}{2}\right| = \left|\frac{1}{2}\right|$.

2) Now we use the condition of fixedness of each point of the line $x + y - 1 = 0$.

Let the point $\begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$ $\forall x_0 \in \mathbf{R}$ $-x_0$ ^{$\sqrt{0}$} 0 0 1 \mathbf{x}_i \mathcal{X}_l \mathcal{X}_l be an arbitrary point of this line. Then the condition of its fixedness will be:

$$
\begin{cases}\nx_0 = \alpha_{11}x_0 + \alpha_{12}(1 - x_0) + 1, \\
1 - x_0 = \alpha_{21}x_0 + \alpha_{22}(1 - x_0) + 1.\n\end{cases}
$$

3) We regroup these equalities to the form

$$
\begin{cases} (\alpha_{11} - \alpha_{12} - 1)x_0 + (\alpha_{12} + 1) = 0, \\ (\alpha_{21} - \alpha_{22} + 1)x_0 + \alpha_{22} = 0. \end{cases}
$$

From where, taking into account $\forall x_0 \in \mathbf{R}$, from

$$
\begin{cases}\n\alpha_{11} - \alpha_{12} - 1 = 0, \\
\alpha_{12} + 1 = 0, \\
\alpha_{21} - \alpha_{22} + 1 = 0,\n\end{cases}
$$
\nwe obtain the answer to the task:
$$
\begin{cases}\nx^* = -y + 1, \\
y^* = -x + 1. \\
+1.\n\end{cases}
$$

Task 10-2.05. Find all invariant lines of an affine transformation of the plane \overline{C} $\left\{ \right.$ $\left\lceil \right\rceil$ $=-45x+29y+$ $=-28x+18y+$ * * $45x + 29y + 107$. $28x + 18y + 65$, $y^* = -45x + 29y$ $x^* = -28x + 18y$

Solution: 1) Let the preimage line have an equation $Ax + By + C = 0$, $A^2 + B^2 > 0$, its image has an equation $Ax^* + By^* + C = 0$ or

$$
A(-28x+18y+65) + B(-45x+29y+107) + C = 0.
$$

And this means that $(-28A - 45B)x + (18A + 29B)y + (65A + 107B + C) = 0$.

2) Since the equation of the line is determined up to a non-zero factor, the invariance condition will have the following form:

$$
\begin{cases}\nA^* = kA = -28A - 45B, \\
B^* = kB = 18A + 29B, \\
C^* = kC = 65A + 107B + C.\n\end{cases}
$$

3) Note that the first two equations form a linear homogeneous system:

$$
\begin{cases} (-28-k)A - 45B = 0, \\ 18A + (29-k)B = 0. \end{cases}
$$

Since A and B cannot be equal to 0 simultaneously, it is necessary to satisfy the condition (following from the theory of systems of linear equations):

$$
\det \begin{vmatrix} -28 - k & -45 \\ 18 & 29 - k \end{vmatrix} = 0,
$$

which gives

$$
(k+28)(k-29)+18\cdot 45=0 \qquad \Rightarrow \qquad k^2-k-2=0.
$$

From where either $k = 2$, or $k = -1$ and can be taken

for
$$
k = 2
$$
 $A = 3$, $B = -2$, $C = -7$, and for $k = -1$ $A = 5$, $B = -3$, $C = 24$.

Consequently, the desired invariant lines will be:

$$
3x-2y-7=0
$$
 and $5x-3y+24=0$.

Task 10-2.06. Find an affine transformation of the plane such that:

1) each of the lines
$$
x - 2y - 3 = 0
$$
 and $-x + y + 1 = 0$ is invariant,
2) the point $M = \begin{vmatrix} 4 \\ -5 \end{vmatrix}$ has as its image the point $M^* = \begin{vmatrix} -39 \\ -32 \end{vmatrix}$.

Solution:

1). Let us move to a *new* coordinate system in which the *origin O*' is the point of intersection of the given lines, and the *new basis* vectors are the direction vectors of these same lines.

The coordinates of O' are coordinates of the intersection point of the lines, determined from the system of equations:

$$
\begin{cases}\nx_0 - 2y_0 = 3, \\
-x_0 + y_0 = -1.\n\end{cases}
$$
\nWhence $x_0 = -1$ and $y_0 = -2$. This means that $\left\| \overrightarrow{OO'} \right\| = \left\| -\frac{1}{2} \right\|$.

As the *direction vectors* of the new axes, we can obviously take 1 \overrightarrow{g}'_1 = $\begin{vmatrix} 2 \\ 1 \end{vmatrix}$ and 1 $\mathcal{L}_{g'}^{\rightarrow}$ = $\|\cdot\|$. Then, according to the theorem on *transition formulas*, we obtain that the expression of the old coordinates through the new ones has the form: $\left\lfloor \right\rfloor$ $\left\{ \right.$ $\left| \right|$ $= x'+y'-2$ $= 2x'+y'$ $'+y'-2.$ $2x'+y'-1$, $y = x'+y'$ $x = 2x+y$ Whence we find the formulas for the *inverse* transition: $\left\lfloor \right\rfloor$ $\left\{ \right.$ $\left| \right|$ $=-x+2y+$ $= x - y ' = -x + 2y + 3.$ $' = x - y - 1,$ $y' = -x + 2y$ $x' = x - y$

2). Based on the conditions of the problem, we can assert that under the sought-for affine transformation:

- 1) The point O' will be fixed,
- 2) and the coordinate axes of the new coordinate system will be invariant lines.

Then in the new coordinate system the formulas of the sought-for affine transformation will have the following, very simple form: $\overline{\mathcal{L}}$ $\left\{ \right.$ $\Big\}$ $=$ $=$ * * $' = \mu y'$, $' = \lambda x',$ $y^* = \mu y$ $x^* = \lambda x$ μ $\lambda x'$, where λ and μ are some constants

3). We will find the values of λ and μ from the condition $M \to M^*$ specified in the condition of the problem. Indeed, using the formulas of the inverse transition, we obtain that in the new coordinate system $M(8, -11)$, and $M^*(-8, -22)$, Whence it is obvious that $\lambda = -1$ and $\mu = 2$.

4). Finally, substituting the inverse transition formulas into the equalities $\overline{\mathcal{L}}$ $\left\{ \right.$ \int $=$ $=$ $-$ * * $' = 2 y',$ $' = -x',$ $y^* = 2y$ $x^* = -x$, we

obtain the equations of the relationship between the coordinates of the image and the preimage in the original coordinate system (that is, the formulas defining the desired affine transformation):

$$
\begin{cases}\nx^* = -4x + 6y + 7, \\
y^* = -3x + 5y + 5.\n\end{cases}
$$

Task 10-2.07. In an orthonormal coordinate system, find the matrix of the operator that orthogonally projects the position vectors of the points of the coordinate plane onto the line $x + 3y - 2 = 0$.

Sulution:

1). Let the point-preimage M have the position vector r_0 \mathcal{X}_1 \mathbf{v} \parallel y 0 0 $\overrightarrow{r_0} = \left\| \begin{array}{c} x_0 \\ x_0 \end{array} \right\|$, and the point-image M^* of the point M have its position vector $r_0^* = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ \rightarrow \mathbb{R}^* $\frac{1}{2}$ = 0 0 $\mathbf{v} = \parallel y$ $\mathcal{X}_{\mathcal{A}}$ $r_0^* = \| \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \|.$

It follows from the figure that there is a point M^* of intersection of the line $x + 3y - 2 = 0$ and the perpendicular to it passing through M.

2) Since the normal vector of a straight line $x + 3y - 2 = 0$ is the direction vector of this perpendicular, the equation of the latter will have the form

$$
\left\| \begin{array}{c} x \\ y \end{array} \right\| = \left\| \begin{array}{c} x_0 \\ y_0 \end{array} \right\| + \tau \left\| \begin{array}{c} 1 \\ 3 \end{array} \right\|.
$$

From which it follows that the coordinates of the position vector of a point M^* will satisfy the system of equations

$$
\begin{cases}\nx_0^* = x_0 + \tau, \\
y_0^* = y_0 + 3\tau, \\
x_0^* + 3y_0^* - 2 = 0\n\end{cases}\n\text{ or }\n\begin{cases}\nx_0^* = \frac{9}{10}x_0 - \frac{3}{10}y_0 + \frac{1}{5}, \\
y_0^* = -\frac{3}{10}x_0 + \frac{1}{10}y_0 + \frac{3}{5}.\n\end{cases}
$$

3) Using the rules of operations with matrices, we finally obtain that

$$
\left\| \begin{array}{c} x_0^* \\ y_0^* \end{array} \right\| = \left\| \begin{array}{ccc} \frac{9}{10} & -\frac{3}{10} \\ -\frac{3}{10} & \frac{1}{10} \end{array} \right\| \left\| \begin{array}{c} x_0 \\ y_0 \end{array} \right\| + \left\| \begin{array}{c} \frac{1}{5} \\ \frac{3}{5} \end{array} \right\|,
$$
\n
$$
\left\| \begin{array}{c} \hat{A} \\ \hat{B} \end{array} \right\| = \left\| \begin{array}{ccc} \frac{9}{10} & -\frac{3}{10} \\ -\frac{3}{10} & \frac{1}{10} \end{array} \right\|.
$$

Solution is found

that is

Note that the operator of orthogonal projection of points of a plane onto a fixed line is linear, but not affine, since there is no one-to-one relationship between the images and preimages. Therefore, det $\|\hat{A}\|_{e} = 0$.