Differentials

When solving applied problems, it is often possible to obtain the necessary information about the local properties of function y = f(x), using only its linear approximation.

In other words, it is possible to represent the function under study in the form

$$y(x) = y(x_0) + A(x_0)(x - x_0) + o(x - x_0).$$

Hence the magnitude of the change in value of f(x) at a small deviation x from x_0 can be estimated as

$$y(x) - y(x_0) \approx A(x_0)(x - x_0).$$

In this case, $A(x_0)(x - x_0)$ is usually called the *differential* of the function y = f(x) and denoted as dy. It is also said that the function y = f(x) is *differentiable* at the point x_0 .

If we accept by definition that the differential of an independent variable x is equal to its increment, i.e. $dx = \Delta x = x - x_0$, then $dy = A(x_0)dx$.

In other words, the differential dy can be considered as a function of two independent variables: x_0 and dx, where this function depends on dx directly proportionally.

It can be shown (this is a theorem!) that $A(x_0) = f'(x_0)$ and hence $dy = f'(x_0)dx$. Moreover, for the function y = f(x) to be differentiable at the point x_0 it is necessary and sufficient that there exists a finite $f'(x_0)$.

For two differentiable functions f(x) and g(x) and arbitrary constants λ and μ the following equalities hold

$$\begin{array}{rcl} d(\lambda f + \mu g) &=& \lambda df + \mu dg \,, \\ d(fg) &=& g df + f dg \,, \\ d\left(\frac{f}{g}\right) &=& \frac{g df - f dg}{g^2} \quad g \neq 0 \end{array}$$

Now let the derivative f'(x) be differentiable. Then, considering dy = f'(x)dx as a function of x for a fixed dx and using dx as the *increment* x again, we can get the differential of dy.

This new differential is called the *second differential* for function f(x) and is denoted as d^2y .

According to this definition, the following equalities are true

$$d^{2}y = d(dy) = d(f'(x)dx) = d(f'(x))dx = f''(x)dxdx = f''(x)(dx)^{2},$$

which is usually written as $d^2y = f''(x)dx^2$.

Arguing similarly, for functions with a higher-order derivative we can defined the differential of order n with the form $d^{(n)}y = f^{(n)}(x)dx^n$.

We must keep in mind an important circumstance (called *invariance* of the form of the first differential). There is dy = f'(x)dx to be always valid. But the formula $d^{(n)}y = f^{(n)}(x)dx^n$ is true only if n = 1 or if x is an independent variable.

Indeed, the second differential for y(t) = f(x(t)) is given by another formula:

$$d^2y = f''_{xx}dx^2 + f'_xd^2x \,.$$

Mean Value Theorems for Differentiable Functions

We will now consider methods for studying a function in a small neighborhood of a certain point, based on the use of the values of its derivatives. The basis of these methods are the following theorems, called *mean value theorems*.

Rolle's	If a function $f(x)$
Theorem	1) is continuous on $[a, b]$,
	2) has at each point (a,b) a finite or infinite
	derivative of a definite sign,
	3) and the equality $f(a) = f(b)$ is true,
	then $\exists \xi \in (a, b)$ such that $f'(\xi) = 0$.

Note that under the conditions of Rolle's theorem, among the points for which $f'(\xi) = 0$, there is always an extremum point of the function f(x).

- ProblemProve that between two real roots of an algebraic polynomial4.1with real coefficients there is a root of its derivative function.
- Solution. Let $y(x) = P_n(x)$ be an algebraic polynomial with real coefficients, for which a and b are adjacent real roots. The function $y(x) = P_n(x)$ is continuous on [a, b] and differentiable on (a, b). Then, by Rolle's theorem, there exists a point $\xi \in (a, b)$ such that $P'_n(\xi) = 0$.
- Solution That is, ξ is a root of the derivative of the algebraic obtained. polynomial.

Lagrange's If a function f(x)
1) is continuous on [a, b],
2) has at each point (a, b) a finite or infinite derivative of a certain sign,

then $\exists \xi \in (a, b)$ such that

$$f(b) - f(a) = f'(\xi)(b - a).$$

The statement of Lagrange's theorem is often called the *finite increment* formula.

It follows from Lagrange's theorem that if f(x) is continuous in some neighborhood of x_0 , differentiable in a punctured neighborhood of this point and $\lim_{x \to x_0} f'(x)$ exists, then f'(x) is continuous at x_0 . **Problem** Prove that $\forall x > 0 \exists \theta(x) \text{ such that} 4.2$

$$\sqrt{x+1} - \sqrt{x} = \frac{1}{2\sqrt{x+\theta(x)}},$$
with $\lim_{x \to +0} \theta(x) = \frac{1}{4}$ and $\lim_{x \to +\infty} \theta(x) = \frac{1}{2}$

Solution. By Lagrange's theorem, applied to the differentiable function $y = \sqrt{x} \ x \in [x_0, x_0 + 1]$, we have the equality

$$\sqrt{x_0+1} - \sqrt{x_0} = \frac{1}{2\sqrt{\xi}}.$$

Putting $\xi = x_0 + \theta(x)$, we obtain

$$\sqrt{x_0 + 1} - \sqrt{x_0} = \frac{1}{2\sqrt{x_0 + \theta(x)}}$$
$$\sqrt{x_0 + 1} + \sqrt{x_0} = 2\sqrt{x_0 + \theta(x)}.$$

Next, squaring both sides of the equality, we find that

$$\theta(x_0) = \frac{1}{4} + \frac{\sqrt{x_0^2 + x_0} - x_0}{2} = \frac{1}{4} + \frac{1}{2} \frac{x_0}{\sqrt{x_0^2 + x_0} + x_0}$$

Solution obtained. and, therefore,
$$\lim_{x \to +0} \theta(x) = \frac{1}{4} \qquad \lim_{x \to +\infty} \theta(x) = \frac{1}{2}.$$

Cauchy's If functions $\phi(t)$ and $\psi(t)$ theorem 1) are continuous on [a, b], 2) have finite derivatives at each point (a, b), and $\phi'(t) \neq 0 \quad \forall t \in (a, b)$, then $\exists \xi \in (a, b)$ such that

$$\frac{\psi(b) - \psi(a)}{\phi(b) - \phi(a)} = \frac{\psi'(\xi)}{\phi'(\xi)}$$

Cauchy's theorem implies a useful rule for unraveling uncertainties of the form $\ll \frac{0}{0}$ and $\ll \frac{\infty}{\infty}$, called L'Hopital's rule.

Theorem If functions f(x) and g(x)

L'Hopital's 1) are differentiable in a punctured neighborhood of point a, and $g'(x) \neq 0$ in this neighborhood,

2) functions f(x) and g(x) are simultaneously either infinitesimal or infinitely large as $x \to a$,

3) there exists a finite $\lim_{x \to a} \frac{f'(x)}{g'(x)}$.

Then the equality $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$ is valid and for differentiable and infinitesimal at the point a functions f(x) and g(x) we have

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}.$$

We illustrate the application of L'Hopital's rule with the following examples.

Problem 4.3. Find $\lim_{x \to +\infty} \frac{\ln x}{x}$.

Solution. According to L'Hopital's rule $\lim_{x \to +\infty} \frac{\ln x}{x} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{1} = 0$.

Problem 4.4. Find $\lim_{x \to 3} \frac{3^x - x^3}{x - 3}$.

Solution. In this case, we have an uncertainty of the form $\ll \frac{0}{0}$, and since $(3^x - x^3)' = 3^x \ln 3 - 3x^2$ and $(x - 3)' = 1 \neq 0$, then according to L'Hopital's rule

$$\lim_{x \to 3} \frac{3^x - x^3}{x - 3} = \lim_{x \to 3} \frac{3^x \ln 3 - 3x^2}{1} = 27 \ln \frac{3}{e}$$