Теорема Коши для уравнений 1-го порядка

На практике достаточно часто требуется находить не общее решение уравнения

$$y' = f(x, y), \tag{1}$$

а лишь некоторое его частное решение, удовлетворяющее конкретным условиям.

Если уравнение не интегрируется в квадратурах, то для решения подобных задач можно применять специальные методы, не требующие нахождения общего решения.

Например, методы *численной аппроксимации* частных решений можно использовать для решения задачи Коши, если в ней применима теорема Коши. Поскольку тогда мы точно знаем, что та функция, которую мы ищем, существует и единственна.

Возможны также случаи, когда решение задачи Коши *существует, но не единственно*, что иногда позволяет решать задачи более сложные, чем задача Коши.

Данный факт иллюстрирует

Задача Для уравнения $y' = 3\sqrt[3]{y^2}$ 1. решить:

- а) задачу Коши с условием y(1) = 1,
- б) задачу Коши с условием y(0) = 0,
- с) краевую задачу с условиями

$$y(-3) = -1$$
 и $y(1) = 1$.

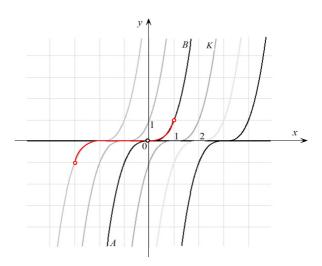


Рис. 1. Интегральные кривые для уравнения в задаче 1.

Решение. Найдем вначале общее решение данного уравнения. Легко видеть, что $y(x) \equiv 0$ есть его частное решение.

Если же $y(x) \neq 0$, то, разделяя переменные, получаем

$$\frac{dy}{3\sqrt[3]{y^2}} = dx\,,$$

что дает

$$\sqrt[3]{y} = x + C$$
 или $y = (x + C)^3$.

Поэтому решение задачи Коши (1.2.3a) есть функция

$$y = x^3,$$

единственная при $x \in (1 - \Delta_1, 1 + \Delta_2)$.

Здесь $0 \le \Delta_1 < 1$ и $0 \le \Delta_2 < +\infty$, поскольку при $\Delta_1 \ge 1$ единственность нарушается и, следовательно, интервал $(0, +\infty)$ является максимально широким множеством однозначной продолжимости решения задачи Коши (1.2.3a).

Решение задачи Коши (1.2.3b) не единственное. Множество графиков решений задачи Коши в этом случае состоит из гладких интегральных кривых, составленных из «подходящих кусков» конкретных частных решений уравнения (1.2.3), при условии, что хотя бы один из этих кусков проходит через точку (0;0).

Наконец, проверьте самостоятельно, что решением краевой задачи (1.2.3c) будет непрерывно дифференцируемое частное решение вида

$$y(x) = \begin{cases} & (x+2)^3 & \text{при } x \in (-\infty, -2) \ , \\ & 0 & \text{при } x \in [-2, 0] \ , \\ & x^3 & \text{при } x \in (0, +\infty) \ , \end{cases}$$

Решение

получено. график которого на рис. 1 показан красным цветом.

Таким образом, общее решение уравнения в задаче 1 есть совокупность:

- частного решения y(x) = 0,
- семейства функций $y = (x+C)^3, \forall C \in R$ и
- всевозможных непрерывно дифференцируемых функций, составленных из подходящих фрагментов функций y(x) = 0 и $y = (x + C)^3$.

Например, интегральной кривой будет линия, проходящая через точки A-(0;0)--(1;0)-K, а линия B-(0;0)--(2;0)-K интегральной кривой не является, поскольку она не есть график функции (нет однозначности в зависимости y от x).

Наконец отметим, что в задаче 1 множество Ω — это вся координатная плоскость, в любой точке которой функция $g(y)=\sqrt[3]{y^2}$ непрерывна, в то время как, частная производная $\dfrac{\partial g}{\partial y}=\dfrac{2}{3\sqrt[3]{y}}$ будет непрерывной лишь при $\forall y\neq 0.$

Уравнения первого порядка, не разрешенные относительно производной

Рассмотрим теперь методы решения уравнений 1-го порядка, не разрешенных относительно производной. Эти уравнения как было отмечено ранее записываются в виде

$$F(x, y, y') = 0, (2)$$

где $F(x_1,x_2,x_3)$ — известная функция от трех переменных, непрерывная в непустой области $\Omega\subseteq E^3$, а y(x) — искомая функция от $x\in X\subseteq \mathbb{R}$.

Решение уравнения (2) будем искать в виде параметрически заданной функци $\left\{ \begin{array}{ll} x=\varphi(t),\\ y=\psi(t), \end{array} \right. \quad t\in\Theta\,.$

Условимся при этом обозначать «штрихом» дифференцирование по переменной x, а «верхней точкой» — дифференцирование по t.

Дадим

Определение 1. Вектор-функция

$$\begin{cases} x = \varphi(t), \\ y = \psi(t), \end{cases} \quad t \in \Theta$$
 (3)

называется частным решением в параметричес-кой форме дифференциального уравнения (2), если $\forall t \in \Theta$:

–
$$\varphi(t)$$
 и $\psi(t)$ непрерывно дифференцируемы ;

$$-\varphi(t) \in X$$
, $\dot{\varphi}(t) \neq 0$

и
$$\left\| \varphi(t) \ \psi(t) \ \frac{\dot{\psi}(t)}{\dot{\varphi}(t)} \right\|^{\mathrm{T}} \in \Omega ;$$

$$-F\left(arphi(t),\;\psi(t),\;rac{\dot{\psi}(t)}{\dot{arphi}(t)}
ight)\;=\;0\;.$$

Отметим, что здесь (по сравнению с определением решения уравнения в дифференциальной форме) неравенство $|\dot{\varphi}(t)|+|\dot{\psi}(t)|>0$ заменено более жестким условием $\dot{\varphi}(t)\neq 0$, гарантирующем существование функции y(x) $\forall x\in X$. При этом интегральной кривой является график частного решения y(x), заданного параметрически вектор-функцией вида (3).

Для решения уравнения (2) в общем случае можно применить метод введения параметра, состоящего в замене y' = p с последующим решением дифференциально-алгебраической системы уравнений:

$$\begin{cases} F(x, y, p) = 0, \\ dy = p \, dx. \end{cases}$$
 (4)

Имеет место

Теорема Система уравнений (4) и уравнение (2) равно-1. сильны.

Использование системы (4) может оказаться полезным, если ее первое уравнение легко разрешимо относительно y или x.

Задача Коши для уравнений, не разрешенных относительно производной

В предыдущем параграфе были обсуждены методы нахождения общего решения уравнений первого порядка, не разрешенных относительно производной, то есть уравнений вида

$$F(x, y, y') = 0.$$

Как и раньше, мы будем предполагать, что скалярные функции F(x,y,d) и $\frac{\partial F}{\partial d}$ вещественны и непрерывны в некоторой непустой области $G\subseteq E^3$.

Тот факт, что для уравнений вида (2) упорядоченная пара чисел $\{x_0; y_0\}$ может вовсе не определять или же определять неоднозначно (даже локально!) частное решение таких уравнений, приводит к необходимости изменения постановки задачи Коши для уравнений первого порядка, неразрешенных относительно производной.

Определение 2	Задача Коши для уравнения $F(x,y,y')=0$ формулируется так: найти $y(x)$ при условиях:
	$\begin{cases} y(x_0) = y_0, \\ y'(x_0) = p_0, \\ F(x_0, y_0, p_0) = 0. \end{cases} $ (7)
	При этом тройка чисел $ x_0 y_0 p_0 ^T \in \Omega \subseteq E^3$ называется начальными условиями задачи Коши.

Иначе говоря, задачей Коши для уравнения (2) называется задача поиска $y^*(x)$ – частного решения уравнения (2), удовлетворяющего условиям (7).

Условия однозначной разрешимости задачи Коши (2)-(7) дает

Теорема Пусть функции F(x,y,d) и $\frac{\partial F}{\partial d}$ непрерывны в области G и пусть $\frac{\partial F}{\partial d}\Big|_{(x_0,y_0,d_0)}\neq 0$, тогда найдется $\delta>0$ такое, что решение задачи Коши $(\mathbf{2})-(\mathbf{7})$ существует и единственно на интервале $(x_0-\delta,x_0+\delta)$.

Рассмотрим теперь случай, когда условия теоремы 2 не выполняются.

Определение	Точка $\ x_0y_0\ ^{T}$ называется <i>особой</i> , если сущест-
3	вует ее окрестность такая, что через эту точку в данной окрестности проходит больше, чем од-
	на интегральная кривая, являющаяся решением
	задачи Коши (2)—(7). Решение задачи Коши (2)—(7), все точки которо-
	го особые, называется особым решением.

Геометрически данное определение может быть интерпретировано так: в каждой точке интегральной кривой особого решения ее касается интегральная кривая другого решения уравнения (2), то есть решения, несовпадающего с особым в некоторой окрестности точки касания.

Аналитически для существования особых решений необходимо нарушение условий теоремы 2, которое может быть сформулировано в виде системы уравнений

$$\begin{cases} F(x, y, d) = 0, \\ \frac{\partial F}{\partial d}(x, y, d) = 0. \end{cases}$$
 (8)

Если из этой системы исключить d, то переменные x и y будут, вообще говоря, связаны некоторым соотношением вида D(x,y)=0 .

Определение 4	Множество точек, координаты которых удовлетворяют уравнению $D(x,y)=0$, называется ∂uc
	криминантной кривой уравнения (2).

Из сказанного следует, что интегральная кривая особого решения обязана быть дискриминантной кривой. Обратное, вообще говоря, неверно.

Это означает, что искать особые решения следует именно среди дискриминантных кривых.

В общем случае для выделения особого решения уравнения (2) следует:

- 1° найти общее решение уравнения (2);
- 2° найти дискриминантные кривые уравнения (2), которые являются частными решениями этого уравнения;
- 3° проверить выполнение определения особого решения для дискриминантных кривых, являющихся частными решениями уравнения (2).

Более конкретно, последовательность шагов исследования в п. 3° следующая.

Пусть y(x,C) $\forall x \in [a,b]$ есть однопараметрическое множество частных решений уравнения (2), а $y^*(x)$ – частное решение этого уравнение, которое подозревается в том, что оно особое. Решение $y^*(x)$ будет особым, если $\forall x \in [a,b]$ у переопределенной системы

$$\begin{cases} y(x,C) &= y^*(x), \\ \frac{\partial y(x,C)}{\partial x} &= \frac{dy^*(x)}{dx} \end{cases} \tag{9}$$

найдется хотя бы одно решение C = C(x).

Проидлюстрируем применение описанной схемы для конкретной задачи.

Задача Решить уравнение 2.

$$2xy' - y = y' \ln yy'.$$

Решение. Исходное уравнение можно привести к виду

$$xu' - u = \frac{u'}{2} \ln \frac{u'}{2}$$

умножением обеих его частей на y с последующей заменой $u=y^2$. А поскольку y=0 не является решением, то новое уравнение равносильно исходному.

Полученное уравнение есть так называемое уравнение Клеро, метод решения которого можно найти в справочниках.

Однако мы воспользуемся не информационным ресурсом, а изложенной выше схемой.

Применим метод введения параметра. Разрешая это уравнение относительно u и полагая u'=p, получаем систему (4) в виде

$$\begin{cases} u = xp - \frac{p}{2} \ln \frac{p}{2}, \\ du = p \, dx. \end{cases}$$
 (10)

Дифференцируя первое уравнение по x и подставляя в него u'=p, получаем

$$p'\left(x - \frac{1}{2}\ln\frac{p}{2} - \frac{1}{2}\right) = 0$$
.

Теперь либо

$$p'=0 \quad \Longrightarrow \quad p=C \ \, \forall \, C>0, \qquad \text{и из } (1.5.6) \quad \Longrightarrow \\ \Longrightarrow u=Cx-\frac{C}{2}\ln\frac{C}{2} \quad \Longrightarrow \quad y^2=Cx-\frac{C}{2}\ln\frac{C}{2}\,,$$

либо

$$x - \frac{1}{2} \ln \frac{p}{2} - \frac{1}{2} = 0 \implies p = 2e^{2x-1}$$
,

Решение что, в свою очередь, при подстановке в *первое* уравнение получено. системы (10) дает $y^2 = e^{2x-1}$.

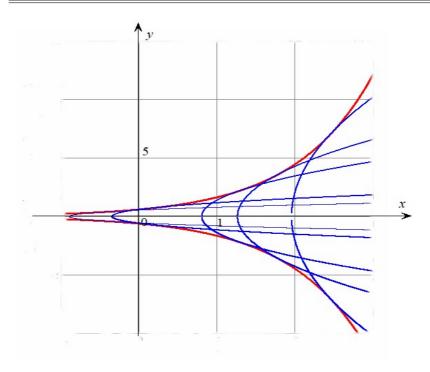


Рис. 2. Интегральные кривые для уравнения в задаче 2.

Интегральные кривые частных решений уравнения в задаче 2 показаны на рис. 2. По поводу их вида можно сделать следующие замечания.

Во-первых, кроме решений, определяемых полученными формулами, как уже указывалось ранее, здесь имеются и «составные» решения, образуемые объединением подходящих фрагментов «формульных» решений.

Во-вторых, среди интегральных кривых могут иметься как пересекающиеся, так и касающиеся друг друга.

Также может оказаться, что через одну точку не проходит ни одна интегральная кривая, а может оказаться — что больше, чем одна.

Наконец, исследуем данное уравнение на наличие особых решений. Найдем дискриминантное множество этого уравнения, Оно будет определяться алгебраической системой уравнений (8)

$$\begin{cases} 2xd - y - d \ln y d = 0, \\ 2x - \ln y d - 1 = 0. \end{cases}$$

Исключив d из этих равенств, получим $y^2 = e^{2x-1}$. Это значит, что обе ветви дискриминантной линии есть решения данного уравнения.

Убедимся теперь, что эти решения особые. Рассмотрим, например, ветвь $y^*(x) = e^{x-\frac{1}{2}}$.

Покажем, что для любого фиксированного x найдется C>0 такое, что для функций

$$y^*(x) = e^{x-\frac{1}{2}}$$
 $y(x,C) = \sqrt{Cx - \frac{C}{2} \ln \frac{C}{2}}$

их значения, также как и значения их производных, равны друг другу в точке x. Это приводит к системе уравнений

$$\begin{cases} e^{2x-1} = Cx - \frac{C}{2} \ln \frac{C}{2}, \\ 2x - 1 = \ln \frac{C}{2}. \end{cases}$$

Нетрудно убедиться, что при $C=2e^{2x-1}$ эти равенства превращаются в тождества по x. Следовательно, решение $y^*(x)=e^{x-\frac{1}{2}}$ особое.

Случай $y^*(x) = -e^{x-\frac{1}{2}}$ рассматривается аналогично.

О методах понижения порядка уравнения и других специальных алгоритмах

Задачи исследования существования и единственности решений возникают и в случае нелинейных уравнений порядка более высокого, чем первый.

Поэтому представляется полезным рассмотрение специальных методов *понижения порядка*, позволяющих упрощать подобные уравнения и использовать методы рассмотренные нами ранее. Рассмотрим некоторые из них.

Порядок уравнения вида $F\left(x,y,y',y'',\ldots,y^{(n)}\right)=0$ может быть понижен, если

1°. Левая часть исходного уравнения не содержит неизвестной функции и ее производных до (k-1)-го порядка включительно $1 \le k \le n$. То есть уравнение имеет вид

$$F(x, y^{(k)}, y^{(k+1)}, \dots, y^{(n)}) = 0.$$

В этом случае за новую неизвестную функцию принимаем $u(x) = y^{(k)}(x),$ тогда

$$y^{(k+1)}(x) = u'(x), \dots, y^{(n)}(x) = u^{(n-k)}(x).$$

Порядок уравнения понизился до n-k.

 2° . Формулировка уравнения не содержит независимой переменной. Это значит, что мы имеем уравнение вида

$$F\left(y,y',y'',\ldots,y^{(n)}\right)=0.$$

Приняв за новую независимую переменную y, а за новую искомую функцию y'(x)=u(y), и учитывая, что

$$y'(x) = u,$$
 $y''_{xx}(x) = u'_x(x) = u'_y \cdot y'(x) = u'_y u,$...,

понижаем порядок уравнения на единицу.

 3° . Исходное уравнение является однородным относительно искомой функции и ее производных, то есть не меняется, если каждую из них умножить на k>0. Порядок уравнения понизится на единицу при замене

$$y' = yu, \quad y'' = y'u + yu' = yu^2 + yu', \quad \dots$$

4°. Исходное уравнение таково (или же приводится к такому виду), что его левая часть является полной производной некоторого порядка. Этот метод поясним следующим примером.

Задача Понизить порядок уравнения y'' + y = 0. 3.

Решение. Умножив обе части этого уравнения на y', получим

$$y'y'' + yy' = 0$$
 \Longrightarrow $\left(\frac{1}{2}y'^2\right)' + \left(\frac{1}{2}y^2\right)' = 0$

или
$$(y'^2 + y^2)' = 0$$
.

Откуда приходим к уравнению первого порядка

$$y'^2 + y^2 = C^2 ,$$

где C есть произвольная константа. Легко видеть, что у него имеются решения $y(x)=C\neq 0$, являющиеся *посторонними* для исходного уравнения.

Отметим, что для решения этой задачи можно использовать и метод 2°. Действительно, сделав замену y'=u, при которой $y''=u'_yu,$ мы получим

$$u'_y u + y = 0 \qquad \Longrightarrow \qquad u \, du + y \, dy = 0.$$

Откуда следует, что

Решение
$$d\left(\frac{u^2+y^2}{2}\right) = 0 \quad \text{ или окончательно } \quad y'^2+y^2 = C^2 \; .$$
 получено .

Иногда общее решение дифференциального уравнения удается найти, если известно какое-нибудь частное решение.

К таким случаям относятся методы, основанные на использовании формулы Лиувилля—Остроградского, которые будут рассмотрены нами позднее.

Другим примером этого подхода служит уравнение Риккати:

$$y' = A(x)y^{2} + B(x)y + C(x), (11)$$

где A(x), B(x) и C(x) заданные функции, непрерывные на некотором интервале (α, β) .

Действительно, в случае, когда известно, что уравнение (11) имеет частное решение $y_0(x)$, его общее решение определяется формулой

$$y(x) = u(x) + y_0(x),$$

где u(x) есть общее решение уравнения Бернулли:

$$u' = (2A(x)y_0(x) + B(x))u + A(x)u^2$$
.

В справедливости данного утверждения убедитесь самостоятельно.

Наконец, следует иметь в виду, что описанные выше случаи суть условия, при которых оказывается возможным понижение порядка, лишь достаточные, но не необходимые.

Это иллюстрирует уравнение

$$y(y'' + y') - (y')^{2}(xy^{2} - 1) = 0.$$

Здесь нет однородности и явно присутствует x в записи условия. Тем не менее замена u(x) = y(x)y'(x) преобразует это уравнение в уравнение первого порядка (конкретно, в уравнение Бернулли) вида

$$u' + u = xu^2.$$

Использование метода понижения порядка в более сложном случае продемонстрируем на примере решения задачи Коши.

Задача 4. Решить задачу Коши

$$2yy'' = (y')^2(3-4y(y')^2)$$
, при условиях $y(4) = 1$, $y'(4) = -1$.

Решение: Используем метод понижения порядка, поскольку уравнение в своей записи не содержит независимой переменной x.

1) Введем новую неизвестную функцию u(y) = y'(x), считая y новой независимой переменной.

В этом случае $y''(x) = (y'(x))'_x = \frac{u'_y(y)}{x'_y} = uu'_y$. Наше уравнение принимает

вид $2yuu' = u^2(3-4yu^2)$.

В силу начального условия y'(4) = -1 имеем для искомой функции $u \neq 0$.

Поэтому $2yu' = u(3-4yu^2)$ или $u' = \frac{3}{2y}u - 2u^3$. Это уравнение Бернулли.

2) Если обе части уравнения Бернулли разделить на u^3 , то

$$\frac{u'}{u^3} = \frac{3}{2y} \frac{1}{u^2} - 2.$$

Здесь делаем новую замену $z(y)=\frac{1}{u^2}$ с $z'=-2\frac{u'}{u^3}$. Получаем $-\frac{z'}{2}-\frac{3}{2y}z=-2$ или линейное неоднородное уравнение вида $z'+\frac{3}{y}z=4$.

3) Решаем однородное $z'+\frac{3}{y}z=0$ методом разделения переменных. Получаем $\ln |z|+3\ln |y|=\ln K,\, K>0$ или $z(y)=\frac{C}{y^3},\, C\neq 0$. Это — общее решение однородного уравнения.

4) Методом вариации постоянных ищем частное решение неоднородного уравнения в виде $z^*(y) = C(y)y^{-3}$.

Подставляя эту формулу в неоднородное уравнение, получаем

$$C'(y) = 4y^3 \implies C(y) = y^4$$
.

Значит,
$$z(y) = \frac{C}{v^3} + y \implies \frac{1}{u^2} = \frac{C}{v^3} + y$$
.

5) Из условия задачи; u(1) = -1. Поэтому

$$1 = \frac{C}{1} + 1 \implies C = 0 \implies z = y \implies \frac{1}{u^2} = y \implies u(y) = \pm \frac{1}{\sqrt{y}}.$$

Поскольку
$$u(1)=y'(4)=-1<0$$
 , то $u(y)=-\frac{1}{\sqrt{y}} \implies \frac{dx}{dy}=-\sqrt{y}$. Откуда
$$x=-\frac{2}{3}y^{\frac{3}{2}}+D \,. \quad \text{A из } y(4)=1 \implies 4=-\frac{2}{3}+D \implies D=\frac{14}{3} \,.$$

Наконец,
$$x = -\frac{2}{3}y^{\frac{3}{2}} + \frac{14}{3}$$
 \Rightarrow $y = \left(7 - \frac{3}{2}x\right)^{\frac{2}{3}}$.