
ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2019, Vol. 59, No. 10, pp. 1626–1638. © Pleiades Publishing, Ltd., 2019.
Russian Text © The Author(s), 2019, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2019, Vol. 59, No. 10, pp. 1681–1694.
Using Feedback Functions
in Linear Programming Problems

A. E. Umnova,* and E. A. Umnova,*
a Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, 141700 Russia

*e-mail: mail@umnov.ru
Received March 25, 2019; revised April 2, 2019; accepted June 10, 2019

Abstract—A scheme for solving linear programming problems based on the use of auxiliary functions
that implement feedback in the system of constraints imposed on the variables to be found and on the
Lagrange multipliers is proposed. The validity of the proposed approach is proved.

Keywords: linear program, penalty function method, feedback functions, modified Lagrangian func-
tion, regularization
DOI: 10.1134/S0965542519100142

1. INTRODUCTION
We consider a version of the method of asymptotic estimates (which is a variation of perturbation

method) for solving the standard linear program in which the
(1.1)

should be maximized over  with the coordinate representation 

(1.2)

where each component of the function   is linear in all its arguments.

2. OUTLINE OF THE METHOD OF FEEDBACKS FOR LINEAR PROGRAMS
First, consider the use of the proposed approach for solving a pair of mutually dual linear programs

written in symmetric form.

Let the vectors  and  with the coordinate columns  and ||Λ|| =

 should be found, respectively, in the following pair of problems that is equivalent to prob-
lem (1.1), (1.2):

1. Primal linear program

maximize the function  over 

(2.1)

Any solution of problem (2.1) is denoted by  and  is denoted by .
2. Dual linear program

minimize the function  over 

(2.2)

Its solution will be denoted by , and let .
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The further presentation can be simplified if we first outline how the pair of problems (2.1), (2.2) can
be solved using the following version of the smooth penalty function method [1].

Assume that this method uses the auxiliary functions

(2.3)

where the function  determines the “penalty” for violating the constraint  and satisfies the fol-
lowing conditions.

(2.4)

Let

(2.5)

Then, the quantities  and  where the points  and  are stationary for the auxil-
iary functions (2.3)  can be used, due to the main property of the penalty function method, as
approximations of  and . Moreover, the stationarity conditions for functions (2.5) satisfy the
implicit function theorem (e.g., see Theorem 2 in [2, § 41]); therefore, the vector functions  and 
can be considered as implicitly determined by Eqs. (2.5).

Finally, in the regular case (i.e., if the pair of problems (2.1), (2.2) has a unique solution),  can be
used as an approximation of x* and  can be used as an approximation of . As is shown, e.g., in [3],
it holds that

Now we describe the proposed approach using the reasoning presented in [4].
A property of the mutually dual problems (2.1) and (2.2) is that the components of the vector x* are the

Lagrange multipliers in problem (2.2), and the components of the vector  are the Lagrange multipliers
in problem (2.1).However, at each fixed  we generally have

These relations become true only in the limit as 
We may assume that there is a  for which there exist vector functions  and  that

 are solutions to the system of equations

(2.6)

for which (if problems (2.1) and (2.2) are consistent) it holds that  and  = G*,
and, in the regular case (i.e., if x* and  are unique), it also holds that

= =

= =
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Table 1. Solutions to system (2.8) in Example 1 with the parameter 

τ

10–1 1.91387303 2.05644660 9.99708585 1.30690566 0.31409072 9.72597830

10–2 1.99167722 2.00559101 10.0001275 1.33099033 0.33105995 9.97230168

10–3 1.99917130 2.00055811 10.0000169 1.33310196 0.33310265 9.99722768

10–4 1.99991717 2.00005580 10.0000017 1.33331023 0.33331023 9.99972274

10–5 1.99999172 2.00000558 10.0000002 1.33333102 0.33333102 9.99997227

10–6 1.99999917 2.00000056 10.0000000 1.33333310 0.33333102 9.99999723

=v 6

ξ τ1( ) ξ τ2( ) τ( ( ))F x λ τ1( ) λ τ2( ) Λ τ( ( ))G
Then, the vector functions  and  along with  and  could be used as approximations of
solutions to problems (2.1) and (2.2).

Note that system (2.6) can also be written as

(2.7)

where the function  is the inverse of the function .

The probable validity of this assumption is confirmed by the following example.
Example 1. Solve the pair of problems with the parameter , where

the primal problem is to maximize the function  in 
subject to the constraints   and  

the dual problem is to minimize the function  in 
subject to the constraints   and  

For  the solutions are    and   

In the case  and the corresponding  system (2.7) has the
form

(2.8)

the solutions to this system for various values of the parameter  are shown in Table 1.
In the next sections of this paper, we consider the conditions under which the methods based on the

solution of systems similar to (2.7) are valid. Here we only note that the structure of this system implies
that  actually implements the feedback in the set of constraints for the primal and dual variables in
problems (2.1) and (2.2). For this reason, we for brevity will use the term feedback when referring the func-
tions of type  and the methods for solving problem (1.1), (1.2) that use these functions.

3. PROOF OF VALIDITY OF THE METHOD OF FEEDBACKS FOR LINEAR PROGRAMS

Define the function  such that it satisfies conditions 1–3 in (2.4). Then, the continuously differ-

entiable function  monotonically increases in   and has a continuously differentiable inverse func-
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USING FEEDBACK FUNCTIONS 1629
tion  which, in turn, monotonically increases in   Furthermore, for this function we have
 ,  , and  .

Denote by  a nonnegative functions that has a unique zero and satisfies the equality

(3.1)

Note that under the assumptions made above, the function  exists and is unique.
Consider the auxiliary function (which will for brevity be called the U-function)

(3.2)

Note that, in this case, the solutions to system (2.7) (if they exist)—the vectors  and —are sta-
tionary points of the U-function with respect to the variables 

Theorem 3.1. The function  is strictly convex upwards with respect to x and strictly convex down-
wards with respect to  at every finite point with positive coordinates in the space  .

Proof. It follows from (3.2) and (2.7) that the elements of the Hessian matrix for  (as functions
of  at fixed  and Λ) are

(where  is the Kronecker symbol). Then, its main minors have the form

The numbers  are positive; indeed, due to the relation between the derivatives of mutually inverse

functions and Condition 3 in (2.4), we have

(3.3)

Therefore, all main minors of odd orders in the Hessian matrix under examination are negative, and
the minors of even orders are positive. Consequently, due to the Sylvester criterion, the Hessian matrix of
the function  is negative definite with respect to the components of x. Therefore, the function

 is strictly convex upwards with respect to x.
Reasoning similarly, we prove that the main minors of the Hessian submatrix of  with respect

to the components of  are  . Due to (3.3), they are positive. Consequently, due to

the Sylvester criterion, the Hessian submatrix of the function  with respect to the compo-
nents of  is positive definite, and the function  itself is strictly convex downwards for all fixed
and x.

Now, we prove the consistency of system (2.7).
Theorem 3.2. The system of equations (2.7) has a unique solution with positive components for every fixed

 for any pair of problems (2.1), (2.2).
Proof. 1. For each vector  with finite positive components, there exists a unique finite vector 

with positive components such that  due to (3.2), this equality can be written as

(3.4)
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Indeed,  is strictly convex upwards with respect to  and conditions (3.4) are equivalent to the
equalities

in which the right-hand sides exist, are positive, and determined uniquely. This, in turn, implies that

Reasoning similarly, we conclude that, for every finite vector  with positive components, there exists
a finite vector  with positive components such that

(3.5)

and that  due to the strict convexity of  downwards with respect to 

2. Now we find the minimum of  with respect to  Formula (3.2) implies

Due to the strict convexity of this function downwards, a sufficient condition for its minimum is

or, after regrouping the terms,

(3.6)

because  and  we have

Hence, due to (3.4), equality (3.6), which is a sufficient condition for the minimum of the function
 with respect to , can be simplified as

(3.7)

where  is the vector with nonnegative components satisfying the equality

 and such that  exists and is unique due to the strict

convexity of  downwards with respect to .
Let us now find the minimum of  with respect to . We have

By regrouping the terms, we obtain
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Finally, due to (3.4), we obtain

(3.8)

3. Now, using the reasoning similar to that used in item 2, we find 

Since  is a strictly convex downward function with respect to the components of the vector 
a sufficient condition for its minimum with respect to  is

(3.9)

The minimum of  with respect to  at fixed  and  is

Due to the upwards convexity of this function with respect to , a sufficient condition for its maximum
with respect to  (after regrouping the terms) is

(3.10)
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maximum of  with respect to  takes the form
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 with respect to .
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This equality implies that, due to the monotonicity of the function  in , it holds that 

 i.e., 
By comparing formulas (3.8) and (3.12), we conclude that

Therefore, the function  has a saddle point, which is a stationary point of  because
this function is continuously differentiable. The stationarity conditions can be written in the form

which is equivalent to system (2.7). This completes the proof.
Below (if no otherwise specified), we assume not only that the function  satisfies conditions (2.4)

but also that  is a function of the single argument  i.e.,

(3.14)

where  is a function defined  that guarantees the fulfillment of conditions (2.4).
Formally, condition (3.14) is an additional constraint of generality in the choice of the function 

which does not play an important role because P(τ, s) is an auxiliary function; however, it not only sim-
plifies the proof of validity of the method of feedbacks but also improves its convergence as  as was
shown in [5].

Now, consider the properties of the function  It is clear that this function is defined for all pos-
itive  and s, is nonnegative in its domain, has a unique zero, and is twice continuously differentiable and
strictly convex downwards with respect to s for  An important property of  is given by the fol-
lowing theorem.

Theorem 3.3. For every fixed , it holds that .

Proof. Due to (3.14), the feedback function  is determined by the equation , and it has

the form  where  is the inverse function of  defined on the interval .
Then, for any finite positive ,

implies the validity of the theorem assertion.
Another useful property of the U-function is given by the following theorem
Theorem 3.4. If  is the Lagrangian function of the pair of problems (2.1), (2.2), then,  and 

in the domain of , it holds that

(3.15)

Proof. The Lagrangian function of the pair of problems (2.1), (2.2) is

Therefore, the -function can be written as

(3.16)

Applying the assertion of Theorem 3.3 to formula (3.16), we obtain the assertion of Theorem 3.4.
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Definition. The set of points   in the space  is called the saddle trajectory of
the U-function of the pair of problems (2.1), (2.2).

Theorem 3.2 implies that the vector functions   and the scalar function 
are defined on each saddle trajectory. Let us consider their properties.

Theorem 3.5. For the proper problems (2.1) and (2.2), i.e., for the problems that have bounded optimal val-
ues of the objective functions, the vector functions  and  have bounded components set 

Proof. 1. Based on (2.6) and using (2.1) and (2.2), the stationarity conditions for the auxiliary -func-
tion (3.2) can be written as

(3.17)

i.e., system (2.7) splits into two independent subsystems; in the first subsystem, the unknowns are the
components of the vector function  and in the second subsystem, the unknowns are the components
of 

Let us examine in more detail the second subsystem and introduce, for convenience, the scalar func-
tions

In this case, the second group of equations in (3.17) takes the form

(3.18)

and the partial derivative of the function  with respect to  is

Hence, taking into account that the second derivative  is defined and positive  due to (2.4),

we obtain

moreover, for , this inequality is strict.
Thus, the right-hand side of the jth equation in (3.18) is a monotonically decreasing function of the

kth component of the vector .
2. Now consider the th equation in (3.18) in which all unknowns, except for , are fixed. Let it have

the form . Note that the domain of the function  and the set of its values is the set of pos-
itive numbers. Item 1 of this proof implies that the continuous function  monotonically decreases
on its entire domain. Therefore, it has a monotonically decreasing inverse function .

Let  be the solution of the equation under consideration, i.e., . It is clear that .
If  is bounded from above, then  and, therefore, 

Then, due to the monotone decrease of the function , we obtain  In other words,
 where  Therefore,  is also bounded from below by a strictly positive

number.
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Using similar reasoning, we can show that the boundedness of the component  from below implies
its boundedness from above.

3. Let us now prove that in the proper case, the solutions to system (3.17) are bounded , and in
the improper case they have unbounded components.

Indeed, if problems (2.1) and (2.2) are solvable and their solutions are finite, then the systems

(3.19)

are consistent.
Consider the second of these systems. In this case, for each , there exists a vector  such that

 Note that each left-hand side in Eqs. (3.18), which has a finite value for each fixed 

due to Theorem 3.2, can be greater or less than  Therefore, due to bounds in item 2, it is

bounded both from below and from above by one of the three positive numbers , or 
where each of them is independent of  by assumption (3.14). Therefore, all left-hand sides in (3.18) are
uniformly bounded on the set 

For the first system in (3.19), the reasoning is similar.
In the improper case, at least one of systems (3.19) is inconsistent. Assume that this is the second sys-

tem. Then, for at least one index , we have  for all  with nonnegative components, including
the solution  to system (3.18), which exists due to Theorem 3.2.

Then, due to

it holds that

which implies the existence of unbounded components in solutions to system (3.17) for the improper pair
of problems (2.1), (2.2).

If the first system in (3.19) is improper, the reasoning is similar.
Theorem 3.6. For the proper problems (2.1) and (2.2), the vector functions  and  are continuously

differentiable .
Proof. 1. Let us introduce the notation

The Jacobian matrix of system (2.7), which coincides with the Hessian matrix of the auxiliary
function (3.2), has in this case the form

or, in block notation, .

ξ*j

∀τ > 0

==
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The elements of the matrix  are the numbers    and the elements of the diag-
onal matrices  and  are   and  , respectively.

Let us find out the sign of . By a property of the Schur complement (e.g. see [6, Chapter 4, § 6,
Subsection 5]) and due to the rules of matrix manipulation, we have

The numbers   and   are positive because the function is strictly mono-

tonically increasing. Therefore, it is clear that 

Let us now estimate the second factor  Note that the matrix  can be consid-

ered as the matrix of a positive definite quadratic form in the space  and the matrix 
(for any rank of the matrix ) specifies either a positive definite or positive semidefinite quadratic form
in the same space due to a corollary to the Cauchy–Binet theorem (e.g. see [6, Chapter 4, § 5, Subsection 6]).

It is clear that in this case the matrix  also specifies a positive definite quadratic

form in  and has a positive determinant (due to the Sylvester criterion). Therefore, we finally obtain

2. The nonsingularity of the Jacobian matrix for the system of equations (2.7) together with the
assumptions on the smoothness of the function  allows us to apply the implicit function theorem [2]
to this system. This implies the continuity of the vector functions  and .

The components of the vector functions  and  are determined by the following system of linear

equations :

(3.20)

where

The last two functions are bounded and continuous due to Theorem 3.5. Therefore, (3.20) implies the
continuous differentiability of the vector functions  and  on the set .

Corollary 3.1. For the proper pair of problems (2.1), (2.2), there exist finite limits , , and

 on the saddle trajectory.

Proof. The continuous differentiability and boundedness of the vector functions  and 
in the proper case imply their uniform continuity on this set. Therefore, the limits mentioned in the cor-
ollary exist and are finite.

The properties of these limits are given by the following theorem.
Theorem 3.7. For the proper pair of problems (2.1), (2.2), the following equalities hold on the saddle tra-

jectory:

Proof. 1. First, note that for finite , we have due to (3.14) the equality
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By multiplying both sides of (2.7) by   and  , respectively, we obtain

Now, due to the remark made above, we obtain the first two assertions of the theorem.
2. The stationarity conditions of the -function imply that

therefore, we obtain

Similarly, we find that

The term-by-term subtraction of the last two equalities gives

Therefore, due to item 1 of this proof, we have on the saddle trajectory the equality

Theorem 3.8. On the saddle trajectories of the proper problems (2.1) and (2.2),

(3.21)

and in the case of uniqueness (regularity) of the pair of problems (2.1), (2.2), it also holds that

(3.22)

Proof. Due to (3.16), we have on the saddle trajectory

therefore,  we have the bounds

(3.23)

and

(3.24)

In the case of proper problems, due to Theorem 3.5, the values of all components of the vector functions
 and  are bounded on the saddle trajectory. Then, Corollary 3.1 and Theorem 3.3 imply that

and that there exist the limits
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Table 2. Solutions to system (3.26) in Example 1 with the parameter 

τ

10–1 2.754765504 0.146829492 5.950019486 1.595322348 0.142544871 5.641236270 –0.119587910

10–2 2.980995393 0.011993961 5.997972668 1.615620231 0.185576042 5.960316945 –0.013227685

10–3 2.998148668 1.1754 × 10–3 5.999823636 1.617360455 0.190653620 5.996003086 –1.3323 × 10–3

10–4 2.999815350 1.1731 × 10–4 5.999823636 1.617531210 0.191167734 5.999600031 –1.3332 × 10–4

10–5 2.999981540 1.1728 × 10–5 5.999998265 1.617548252 0.191167734 5.999960000 –1.3333 × 10–5

10–6 2.999998154 1.1728 × 10–6 5.999999827 1.617549956 0.191224355 5.999996000 –1.3333 × 10–6

=v 3

ξ τ1( ) ξ τ2( ) τ( ( ))F x λ τ1( ) λ τ2( ) Λ τ( ( ))G Λ τ1( ( ))g

Table 3. Solutions to system (3.26) in Example 1 with the parameter 

τ

103 0.999000478 0.999990964 4.997973847 1.006016976 0.997002498 2.963964059 2.034009788

102 0.990028539 0.999064507 4.977250598 1.061672873 0.970247397 2.636465765 2.340784833

10 0.890763029 0.891130932 4.454918853 1.717012067 0.721168975 –0.824022353 5.278941206
1 0.104551523 0.048898425 0.355798321 6.557200845 0.086427254 –19.153039010 19.508837331

10–1 8.6106 × 10–4 4.2695 × 10–4 3.0030 × 10–3 60.050951736 8.3357 × 10–3 –180.102840769 180.105843742

10–2 8.3611 × 10–6 4.1771 × 10–6 4.9253 × 10–5 600.005009704 8.3334 × 10–4 –1800.010029000 1.8000 × 103

10–3 8.3361 × 10–8 4.1677 × 10–8 2.9175 × 10–7 6.0000 × 103 8.3333 × 10–5 –18000.001000000 1.8000 × 104

= −v 3

ξ τ1( ) ξ τ2( ) τ( ( ))F x λ τ1( ) λ τ2( ) Λ τ( ( ))G − Λ( ) ( )F x G
Under the assumptions made above, the vector functions  and  are continuous  There-
fore, we conclude from the continuity of  inequalities (3.23), (3.24), and the properties of super-
position of continuous functions that

In turn, this implies that limits (3.21) exist and satisfy the equalities

Finally, in the regular case, the Lagrangian function of problems (2.1) and (2.2) has a unique saddle
point  therefore, equalities (3.22) hold.

To complete the description of the properties of the U-function for linear problems, we note that the
uniqueness of the saddle point of the U-function allows us to consider its representation as a sum of the
Lagrangian function and the term

as a regularization method for proper (but irregular) problems, and the U-function itself as a version of the
modified Lagrangian function. It is important that the nonnegativity of the bounds on the Lagrange mul-
tipliers is guaranteed by conditions (2.4).

Finally, note that feedback functions can also be used for solving nonlinear problems. A discussion of
various aspects of such applications and examples can be found in [7].

We illustrate the assertions of Theorems 3.5–3.8 using the following versions of Example 1.

Let the parameter  in Example 1; then the solution is , , , and ,

 , . The solution to the primal problem is unique and overdetermined (i.e., the
number of active constraints at the solution point is greater than the number of variables), and the solution
to the dual problem is not unique.

τ( )x Λ τ( ) ∀τ > .0
, Λ ,( )L x

τ→+ τ→+ τ→+
τ , Λ τ = τ , λ τ = = .

0 0 0
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0 0
( lim ( )) * and ( lim ( )) *F x F G G
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m n
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R R

=v 3 ξ =1* 3 ξ =2* 0 =* 6F λ = −1* 2 2t
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t =* 6G
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Fig. 1. Plots of the functions  for the solutions to system (3.26) with  and .
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In Example 1 with the parameter , the primal problem is inconsistent and the dual problem has
an unbounded solution.

When solving these two versions of Example 1, we use the function  for which 

and, respectively,  as an alternative to system (2.8).
In this case,  is an infinitely differentiable approximation of the standard quadratic penalty func-

tion because  for small positive τ. In this case, system (2.8) takes the form

(3.26)

The solutions to system (3.26) for various values of the parameter  are shown in Tables 2 and 3, and
their graphical representation on the logarithmic scale of the argument is shown in Fig. 1. In the tables,
we use the notation , , and .
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