Прямая и двойственная задачи линейного программирования

Рассмотрим следующую пару задач:

прямую задачу:

найти максимум
$$\sum_{j=1}^n \sigma_j \xi_j$$
 на $\{\xi_1,\xi_2,\ldots,\xi_n\} \in E^n$,

при условиях:

$$\xi_{j} \ge 0$$
, $j = [1, n]$, $\sum_{i=1}^{n} \alpha_{ij} \xi_{j} \le \beta_{i}$, $j = [1, m]$

и двойственную задачу:

найти минимум
$$\sum_{i=1}^{m} \beta_{i} \lambda_{i}$$
 на $\{\lambda_{1}, \lambda_{2}, \dots, \lambda_{m}\} \in E^{m}$, при условиях:
$$\lambda_{i} \geq 0 \;, \; i = [1, m], \qquad \sum_{i=1}^{m} \alpha_{ij} \lambda_{i} \geq \sigma_{i} \;, \; i = [1, n].$$

МММ Тема01 2023/24 уч. год гр. Б03-201

Основные правила, связывающие условия прямой и двойственной задач таковы:

Если в условии <i>прямой</i> задачи	то в условии <i>двойственной</i> задачи
Найти максимум	Найти минимум
Найти минимум	Найти максимум
Число переменных	Число ограничений
Число ограничений	Число переменных
\dot{J} -ый коэффициент целевого функционала	правая часть \dot{J} -го неравенства
правая часть i -го неравенства	i -ый коэффициент целевого функционала
j -ый столбец в матрице ограничений	j -ая строка в матрице ограничений
<i>i</i> -ая строка в матрице ограничений	i -ый столбец в матрице ограничений

Заметим, что в силу этих правил задача двойственная к двойственной является прямой задачей.

Теоремы двойственности в линейном программировании

Для каждой пары взаимодвойственных задач верна

Теорема 1.1

Если
$$\|x^*\| = \|\xi_1^* \quad \xi_2^* \quad \dots \quad \xi_n^*\|^T$$
 — решение прямой задачи, а $\|\Lambda^*\| = \|\lambda_1^* \quad \lambda_2^* \quad \dots \quad \lambda_m^*\|^T$ — решение двойственной задачи, то справедливы равенства:

1°. основное соотношение двойственности

$$\sum_{j=1}^n \sigma_j \xi_j^* = \sum_{i=1}^m \beta_i \lambda_i^*;$$

2°. соотношения дополняющей нежесткости

$$\lambda_i^*(-\beta_i + \sum_{j=1}^n \alpha_{ij} \xi_j^*) = 0 ; \forall i = [1, m],$$

$$\xi_{j}^{*}(-\sigma_{j}+\sum_{i=1}^{m}\alpha_{ij}\lambda_{i}^{*})=0; \forall j=[1,n].$$

Следствие: метод "малых вариаций".

Пусть
$$F^* = \sum_{j=1}^n \sigma_j \xi_j^* = \sum_{i=1}^m \beta_i \lambda_i^*$$
,

тогда
$$\dfrac{\partial \boldsymbol{F}^*}{\partial \boldsymbol{eta}_i} = \boldsymbol{\lambda}_i^*$$
 .

Или, приближенно,
$$\lambda_i^* \approx \frac{\Delta F^*}{\Delta \beta_i}$$
.

МММ Тема01 2023/24 уч. год гр. Б03-201

Свойства пары взаимодвойственных задач ЛП

Основное соотношение двойственности и условия дополняющей нежесткости являются базовыми свойствами взаимодвойственной пары задач. Кроме того, справедливы следующие утверждения.

Теорема Если χ^* и Λ^* допустимые элементы пары 1.2. взаимодвойственных задач такие, что

$$\sum_{j=1}^n \sigma_j \xi_j^* = \sum_{i=1}^m \beta_i \lambda_i^* ,$$

то χ^* и Λ^* – решения этих задач.

6

Для пары взаимодвойственных задач имеет место следующая (подтверждаемая примерами) альтернатива:

а) обе задачи имеют решение: прямая

Найти максимум $F=2\xi_1+3\xi_2$ по $\{\xi_1,\xi_2\}\in E^2$, при условиях:

$$\xi_i \ge 0$$
, $j = [1, 2]$,
 $\xi_1 + 2\xi_2 \le 6$,
 $2\xi_1 + \xi_2 \le 6$

с решением $\xi_1^* = 2$, $\xi_2^* = 2$, $F^* = 10$

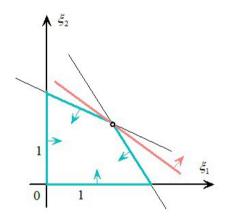
И

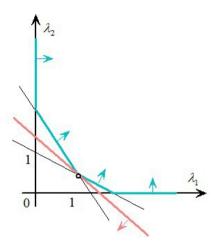
двойственная

Найти минимум $G=6\lambda_1+6\lambda_2$ по $\{\lambda_1,\lambda_2\}\in E^2$, при условиях:

$$\lambda_i \ge 0$$
, $j = [1, 2]$,
 $\lambda_1 + 2\lambda_2 \ge 2$,
 $2\lambda_1 + \lambda_2 \ge 3$

с решением $\lambda_1^* = \frac{4}{3}, \lambda_2^* = \frac{1}{3}, G^* = 10.$





б) обе задачи несовместны:

найти максимум $F=\xi_1+3\xi_2$ по $\{\xi_1,\xi_2\}\in E^2,$ при условиях:

$$\xi_i \ge 0$$
, $j = [1,2]$,
 $\xi_1 - \xi_2 \le 3$,
 $-\xi_1 + \xi_2 \le -4$.

И

найти минимум $G=3\lambda_1-4\lambda_2$ по $\{\lambda_1,\lambda_2\}\in E^2$, при условиях:

$$\lambda_i \ge 0, \quad j = [1, 2],$$

$$\lambda_1 - \lambda_2 \ge 1,$$

$$-\lambda_1 + \lambda_2 \ge 3.$$

в) одна задача совместна, а другая – нет:

найти максимум $F=\xi_1$ по $\{\xi_1,\xi_2\}\in E^2$, при условиях:

$$\xi_i \ge 0, \quad j = [1, 2],$$

 $\xi_1 - \xi_2 \le 1,$

с неограниченым целевым функционалом на множестве допустимых состояний

И

найти минимум $G=\lambda_1$ no $\{\lambda_1\}\in E^1$,

при условиях:

$$\lambda_1 \ge 0 ,$$

$$\lambda_1 \ge 1 ,$$

$$-\lambda_1 \ge 0 ,$$

которая несовместна.

Обратите внимание, что согласно определению 4.1.1 первая из задач в пункте в) решений не имеет. Этот факт обобщает

МММ Тема01 2023/24 уч. год гр. Б03-201

Единственность и переопределенность решений взаимодвойственных задач ЛП

Рассмотренные выше утверждения справедливы как случаев единственного, так и неединственного решения задачи ЛП.

Следующая теорема позволяет делать заключение о числе этих решений.

Теорема Если одна из взаимодвойственных задач имеет *единственное*, 1.3. переопределенное решение, то другая задача имеет неединственное решение.

Отметим также, что возможен случай, когда обе задачи взаимодвойственной пары имеют неединственное решение. Проиллюстрируем два последних утверждения примерами.

11

2023/24 уч. год гр. Б03-201

а) <u>прямая задача переопределена, а двойственная имеет неединственное решение:</u>

найти максимум

$$F=2\xi_1+3\xi_2 \ \ \text{no} \ \ \{\xi_1,\xi_2\}\in E^2\,,$$

при условиях:

$$\xi_i \ge 0$$
, $j = [1, 2]$,
 $\xi_1 + 2\xi_2 \le 6$,
 $2\xi_1 + \xi_2 \le 3$

с решением
$$\xi_1^* = 0, \xi_2^* = 3, F^* = 9$$

В этом случае на элементе χ^* активными являются ограничения

$$\xi_1 \ge 0$$
, $\xi_1 + 2\xi_2 \le 6$, $2\xi_1 + \xi_2 \le 3$.

а, поскольку их число $3>\dim(E^2)=2$, то это решение *переопределенное*,

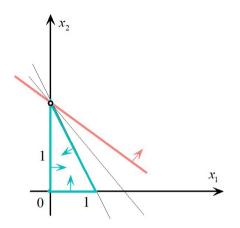
И

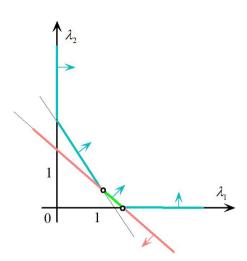
двойственная задача с неединственным решением

найти минимум $G=6\lambda_1+3\lambda_2$ по $\{\lambda_1,\lambda_2\}\in E^2$, при условиях:

$$\begin{aligned} &\lambda_i \geq 0 \;, \quad j = [1,2], \\ &\lambda_1 + 2\lambda_2 \geq 2, \\ &2\lambda_1 + \lambda_2 \geq 3 \end{aligned}$$

с решением
$$\lambda_1^* = t$$
; $t \in [0, \frac{4}{3}]$; $\lambda_2^* = 3 - 2t$; $G^* = 9$.





б) обе задачи взаимодвойственной пары имеют неединственное решение:

найти максимум $F=\xi_1+2\xi_2$ по $\{\xi_1,\xi_2\}\in E^2,$ при условиях:

$$\xi_i \ge 0$$
, $j = [1, 2]$,
 $2\xi_1 + 4\xi_2 \le 4$,
 $3\xi_1 + 6\xi_2 \le 6$,

с решением
$$\xi_1^* = t$$
; $t \in [0,2]$; $\xi_2^* = 1 - \frac{1}{2}t$; $F^* = 2$.

и двойственная задача

найти минимум $G=4\lambda_1+6\lambda_2$ по $\{\lambda_1,\lambda_2\}\in E^2$, при условиях:

$$\begin{split} &\lambda_i \geq 0 \;, \quad j = [1,2], \\ &2\lambda_1 + 3\lambda_2 \geq 1, \\ &4\lambda_1 + 6\lambda_2 \geq 2, \end{split}$$

с решением $\lambda_1^* = t$; $t \in [0, \frac{1}{2}]$; $\lambda_2^* = \frac{1}{3} - \frac{2}{3}t$; $G^* = 2$.