ЗАДАЧА ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ И ЕЕ СВОЙСТВА

Задачей математического программирования принято называть задачу:

максимизировать
$$F(x)$$
 по $x \in E^n$ при условиях: $f_i(x) \le 0$ $i = \overline{1,m}$

или, в координатной форме,

найти максимум $F(\xi_1,\xi_2,...,\xi_n)$ по $\{\xi_1,\xi_2,...,\xi_n\}$, при условиях:

$$\begin{cases} f_1(\xi_1, \xi_2, ..., \xi_n) \leq 0, \\ f_2(\xi_1, \xi_2, ..., \xi_n) \leq 0, \\ ... \\ f_m(\xi_1, \xi_2, ..., \xi_n) \leq 0. \end{cases}$$

ПОСТАНОВКА ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

Если функции F(x) и $f_i(x) \le 0$ $i = \overline{1,m}$ линейные, то задачу математического программирования называют задачей линейного программирования.

В дальнейшем мы будем использовать следующую конкретную форму постановки задач линейного программирования.

Найти максимум
$$\sum_{j=1}^{n}\sigma_{j}\xi_{j}\quad no\quad \{\xi_{1},\xi_{2},\ldots,\xi_{n}\}\in E^{n}\,,$$
 при условиях:
$$\xi_{j}\geq0\,,\quad j=[1,n],\qquad \qquad (1.1)$$

$$-\beta_{i}+\sum_{j=1}^{n}\alpha_{ij}\xi_{j}\leq0\,,\quad i=[1,m].$$

Множество элементов $x \in E^n$, удовлетворяющих всем ограничениям задачи (1.1), будем обозначать R.

Определение 1.1.

Принято говорить, что

- элемент $x^0 \in E^n$ допустимым, если на нем выполнены все ограничения задачи ЛП, то есть, $x^0 \in R$;
- ограничение типа "неравенство" задачи ЛП на элементе $x^0 \in E^n$ называется активным, если на этом x^0 данное ограничение нарушено, или выполняется как равенство;
- если задача ЛП имеет хотя бы один допустимый элемент, то задача ЛП называется *совместной*. Иначе говорят, что задача ЛП *несовместна*.
- ограниченный элемент x^* называется решением, если он удовлетворяет всем ограничениям, а целевой функционал имеет на нем экстремальное значение. Сама задача ЛП в этом случае называется совместной.
- ограниченное решение x^* задачи ЛП называется *переопределенным*, если число ограничений, активных на x^* , больше, чем размерность пространства E^n ;

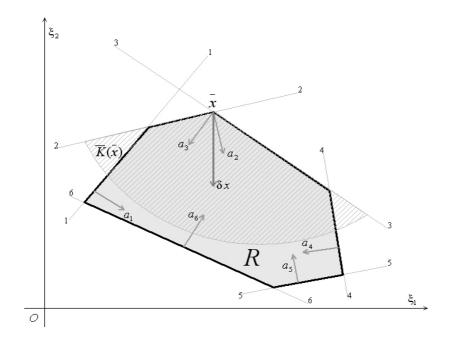


Рис. 1.1.

Для выбранного граничного элемента \bar{x} (рис. 1.1) активными являются ограничения с индексами 2 и 3. Остальные ограничения на этом элементе неактивны. Множество допустимых элементов R отмечено серым цветом, а конус допустимых направлений $\overline{K}(\bar{x})$ заштрихован.

Условие *оптимальности* элемента \overline{x} геометрически означает, что любая допустимая вариация δx на элементе \overline{x} является в E^2 вектором, образующим не тупой угол со всеми нормальными, ориентированными внутрь R, векторами *всех активных* на \overline{x} ограничениях.

Вариация δx называется улучшающей для элемента \overline{x} , если

$$F(\bar{x} + \delta x) > F(\bar{x})$$
.

Как решаются задачи линейного программирования

Проиллюстрируем применение описанной схемы для следующей задачи линейного программирования:

Найти максимум $2\xi_1 + 3\xi_2$ на $\{\xi_1, \xi_2\} \in E^2$, при условиях:

$$\xi_i \ge 0$$
, $j = [1, 2]$,
 $\xi_1 + 2\xi_2 \le 6$,
 $2\xi_1 + \xi_2 \le 6$.

Приведем условие этой задачи к каноническому виду включением в условие двух дополнительных неотрицательных компонент ξ_3 и ξ_4 :

Найти максимум $2\xi_1 + 3\xi_2$ на $\{\xi_1, \xi_2, \xi_3, \xi_4\} \in E^4$, при условиях:

$$\xi_i \ge 0$$
, $j = [1,4]$,
 $\xi_1 + 2\xi_2 + \xi_3 = 6$,
 $2\xi_1 + \xi_2 + \xi_4 = 6$.

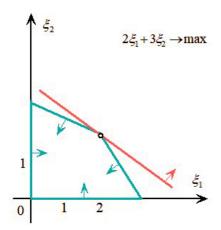
Пусть $\|x'\| = \|\xi_1 - \xi_2\|^T$, тогда в силу двух последних равенств и условия неотрицательности переменных,

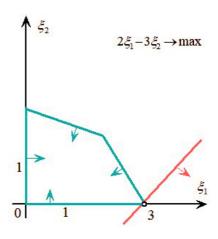
$$\xi_1(\xi_3,\xi_4) = 2 + \frac{1}{3}\xi_3 - \frac{2}{3}\xi_4 \ge 0 \quad \text{ if } \quad \xi_2(\xi_3,\xi_4) = 2 - \frac{2}{3}\xi_3 + \frac{1}{3}\xi_4 \ge 0.$$

Что в свою очередь приводит к выражению для функционала

$$2\xi_1 + 3\xi_2 = 10 - \frac{4}{3}\xi_3 - \frac{1}{3}\xi_4,$$

из которого в силу неотрицательности ξ_3 и ξ_4 получаем, что *максимальное* значение функционала равно 10 на элементе $\|x^*\| = \|2 \quad 2\|^{\mathrm{T}}$.





На практике процедура решения часто оказываться более сложной. Пусть, например, требуется:

Приведем условие этой задачи к каноническому виду включением в условие двух дополнительных неотрицательных компонент ξ_3 и ξ_4 :

Найти максимум
$$2\xi_1-3\xi_2$$
 на $\{\xi_1,\xi_2,\xi_3,\xi_4\}\in E^4$, при условиях: $\xi_i\geq 0$, $j=[1,4]$,
$$\xi_1+2\xi_2+\xi_3=6,$$

$$2\xi_1+\xi_2+\xi_4=6.$$

Пусть снова
$$\|x'\| = \|\xi_1 \quad \xi_2\|^T$$
 , тогда мы имеем
$$\xi_1(\xi_3, \xi_4) = 2 + \frac{1}{3}\xi_3 - \frac{2}{3}\xi_4 \ge 0 \quad \text{и} \quad \xi_2(\xi_3, \xi_4) = 2 - \frac{2}{3}\xi_3 + \frac{1}{3}\xi_4 \ge 0.$$

Это приводит к иному выражению для целевого функционала

$$2\xi_1 - 3\xi_2 = -2 + \frac{8}{3}\xi_3 - \frac{7}{3}\xi_4.$$

Из этой формулы, следует, что, в силу неотрицательности ξ_4 , оптимальное значение ξ_4 следует выбрать нулевым, а вот значение ξ_3 нужно постараться сделать как можно большим.

Из равенств

$$\xi_1(\xi_3,\xi_4) = 2 + \frac{1}{3}\xi_3 - \frac{2}{3}\xi_4 \quad \text{if} \quad \xi_2(\xi_3,\xi_4) = 2 - \frac{2}{3}\xi_3 + \frac{1}{3}\xi_4$$

вытекает, что с ростом ξ_3 значение ξ_1 неограниченно возрастает, а значение ξ_2 убывает, но не может стать *отрицательным* числом. Поэтому (учитывая, что $\xi_4=0$) мы приходим к следующему условию, определяющему максимально допустимую величину ξ_3

$$\xi_2(\xi_3, \xi_4) = 2 - \frac{2}{3}\xi_3 \ge 0.$$

Откуда $\xi_3 \leq 3$. И окончательно мы приходим к заключению, что координаты оптимального элемента в E^4 имеют вид

$$\xi_1^* = 3 \; ; \quad \xi_2^* = 0 \; ; \quad \xi_3^* = 3 \; ; \quad \xi_4^* = 0 \; .$$

Следовательно, максимальное значение целевого функционала равно 6.

Случай переопределенного решения задачи линейного программирования.

Решение задачи ЛП, как точка в E^n может однозначно определяться n линейно независимыми линейными ограничениями типа равенство. Но в принципе таких ограничений может быть и больше.

Рассмотрим задачу:

найти максимум
$$2\xi_1-3\xi_2$$
 на $\{\xi_1,\xi_2\}\in E^2$, $\xi_i\geq 0$, $j=[1,2]$, при условиях: $\xi_1+2\xi_2\leq 3$, $2\xi_1+\xi_2\leq 6$.

Опять же приведем условие этой задачи к каноническому виду включением в условие двух дополнительных неотрицательных компонент ξ_3 и ξ_4 :

Найти максимум
$$2\xi_1-3\xi_2$$
 на $\{\xi_1,\xi_2,\xi_3,\xi_4\}\in E^4$, при условиях: $\xi_i\geq 0$, $j=[1,4]$,
$$\xi_1+2\xi_2+\xi_3=3, \\ 2\xi_1+\xi_2+\xi_4=6.$$

Пусть снова $\|x'\| = \|\xi_1 - \xi_2\|^{\mathsf{T}}$, тогда мы имеем

$$\xi_1(\xi_3,\xi_4) = 3 + \frac{1}{3}\,\xi_3 - \frac{2}{3}\,\xi_4 \geq 0 \qquad \text{if} \qquad \xi_2(\xi_3,\xi_4) = -\frac{2}{3}\,\xi_3 + \frac{1}{3}\,\xi_4 \geq 0.$$

Это приводит к иному выражению для целевого функционала

$$2\xi_1 - 3\xi_2 = 6 + \frac{8}{3}\xi_3 - \frac{7}{3}\xi_4.$$

Из этой формулы, следует, что, в силу неотрицательности ξ_4 , оптимальное значение ξ_4 следует выбрать нулевым, а вот значение ξ_3 нужно постараться сделать как можно большим.

Из равенств

$$\xi_1(\xi_3,\xi_4) = 3 + \frac{1}{3}\xi_3 - \frac{2}{3}\xi_4$$
 и $\xi_2(\xi_3,\xi_4) = -\frac{2}{3}\xi_3 + \frac{1}{3}\xi_4$

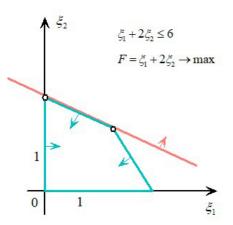
вытекает, что с ростом ξ_3 значение ξ_1 неограниченно возрастает, а значение ξ_2 убывает, но не может стать *отрицательным* числом. Поэтому (учитывая, что $\xi_4=0$) мы приходим к следующему условию, определяющему максимально допустимую величину ξ_3

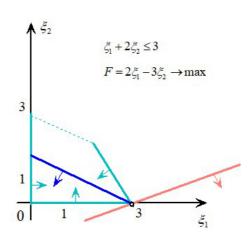
$$\xi_2(\xi_3,\xi_4) = -\frac{2}{3}\xi_3 \ge 0.$$

Откуда $0 \le \xi_3 \le 0 \implies \xi_3 = 0$. И окончательно мы приходим к заключению, что координаты оптимального элемента в E^4 для задачи и канонической форме имеют вид

$$\xi_1^* = 3$$
; $\xi_2^* = 0$; $\xi_3^* = 0$; $\xi_4^* = 0$.

Следовательно, максимальное значение целевого функционала равно 6. Но при этом число активных в точке решения ограничений равно 3 > n = 2. Переопределенность!





Случай неединственного решения задачи линейного программирования.

Решение задачи ЛП, как точка в E^n может однозначно определяться n линейно независимыми линейными ограничениями типа равенство. Но в некоторых случаях е таких ограничений может быть и меньше, чем n.

Рассмотрим задачу:

найти максимум
$$\xi_1+2\xi_2$$
 на $\{\xi_1,\xi_2\}\in E^2$, $\xi_i\geq 0$, $j=[1,2]$, при условиях: $\xi_1+2\xi_2\leq 6$, $2\xi_1+\xi_2\leq 6$.

Опять же приведем условие этой задачи к каноническому виду включением в условие двух дополнительных неотрицательных компонент ξ_3 и ξ_4 :

Найти максимум
$$\xi_1+2\xi_2$$
 на $\{\xi_1,\xi_2,\xi_3,\xi_4\}\in E^4$, при условиях: $\xi_i\geq 0$, $j=[1,4]$,
$$\xi_1+2\xi_2+\xi_3=6, \\ 2\xi_1+\xi_2+\xi_4=6.$$

Пусть снова $\|x\| = \|\xi_1 - \xi_2\|^T$, тогда мы имеем

$$\xi_1(\xi_3,\xi_4) = 2 + \frac{1}{3}\,\xi_3 - \frac{2}{3}\,\xi_4 \ge 0 \qquad \text{if} \qquad \xi_2(\xi_3,\xi_4) = 2 - \frac{2}{3}\,\xi_3 + \frac{1}{3}\,\xi_4 \ge 0.$$

Это приводит к иному выражению для целевого функционала

$$F = \xi_1 + 2\xi_2 = 6 - \xi_3 + 0 \cdot \xi_4$$
.

Из этой формулы, следует, что, в силу неотрицательности ξ_3 , оптимальное значение ξ_3 следует выбрать нулевым, а вот значение ξ_4 на значение целевого функционала влиять не будет.

Допустимые значения ξ_4 очевидно существуют. Например 0. Но любое ли неотрицательное значение может быть у ξ_4 в этой задаче?

Из равенств

$$\xi_1(\xi_3,\xi_4) = 2 + \frac{1}{3}\xi_3 - \frac{2}{3}\xi_4 \quad \text{if} \quad \xi_2(\xi_3,\xi_4) = 2 - \frac{2}{3}\xi_3 + \frac{1}{3}\xi_4$$

вытекает, что с ростом ξ_3 значение ξ_1 неограниченно возрастает, а значение ξ_2 убывает, но не может стать *отрицательным* числом. Поэтому (учитывая, что $\xi_3=0$) мы приходим к следующему условию, определяющему максимально допустимую величину ξ_4

$$\xi_1(\xi_3,\xi_4) = 2 - \frac{2}{3}\xi_4 \ge 0.$$

Откуда $0 \le \xi_4 \le 3$.

Используем параметрическую форму записи ответа. Для этого положим

$$\xi_4=t,\quad 0\leq t\leq 3$$
 . Тогда получаем, что
$$\xi_1=2-\frac{2}{3}t$$

$$\xi_2=2+\frac{1}{3}t$$

И окончательно мы приходим к заключению, что координаты оптимального элемента в E^4 для задачи и канонической форме имеют вид

$$\xi_1^* = 2 - \frac{2}{3}t$$
; $\xi_2^* = 2 + \frac{1}{3}t$; $\xi_3^* = 0$; $\xi_4^* = t$.

при любом $0 \le t \le 3$. Наконец, максимальное значение целевого функционала равно

$$F^* = \left(2 - \frac{2}{3}t\right) + 2\left(2 + \frac{1}{3}t\right) = 6 \quad \forall t \in [0,3].$$

Прямая и двойственная задачи линейного программирования

Рассмотрим следующую пару задач:

прямую задачу:

найти максимум
$$\sum_{j=1}^n \sigma_j \xi_j$$
 на $\{\xi_1, \xi_2, \ldots, \xi_n\} \in E^n$,

при условиях:

$$\xi_{j} \ge 0, j = [1, n], \qquad \sum_{j=1}^{n} \alpha_{ij} \xi_{j} \le \beta_{i}, \quad i = [1, m]$$

и двойственную задачу:

найти минимум
$$\sum_{i=1}^m eta_i \lambda_i$$
 на $\{\lambda_1, \lambda_2, \dots, \lambda_m\} \in E^m$,

при условиях:

$$\lambda_i \geq 0 \;, \; i = [1, m], \qquad \sum_{i=1}^m \alpha_{ij} \lambda_i \geq \sigma_j \;, \quad j = [1, n].$$

Основные правила, связывающие условия прямой и двойственной задач таковы:

Если в условии <i>прямой</i> задачи	то в условии <i>двойственной</i> задачи	
Найти максимум	Найти минимум	
Найти минимум	Найти максимум	
Число переменных	Число ограничений	
Число ограничений	Число переменных	
j -ый коэффициент	правая часть	
целевого функционала	j -го неравенства	
правая часть	$\it i$ -ый коэффициент	
i -го неравенства	целевого функционала	
j -ый столбец	j -ая строка	
в матрице ограничений	в матрице ограничений	
і -ая строка	i -ый столбец	
в матрице ограничений	в матрице ограничений	

Заметим, что в силу этих правил задача двойственная к двойственной является прямой задачей.

Теоремы двойственности в линейном программировании

Для каждой пары взаимодвойственных задач верна

Теорема 1.1

Если
$$\|x^*\| = \|\xi_1^* \quad \xi_2^* \quad \dots \quad \xi_n^*\|^T$$
 — решение прямой задачи, а $\|\Lambda^*\| = \|\lambda_1^* \quad \lambda_2^* \quad \dots \quad \lambda_m^*\|^T$ — решение двойственной задачи, то справедливы равенства:

1°. основное соотношение двойственности

$$\sum_{j=1}^n \sigma_j \xi_j^* = \sum_{i=1}^m \beta_i \lambda_i^*;$$

2°. соотношения дополняющей нежесткости

$$\lambda_i^*(-\beta_i + \sum_{j=1}^n \alpha_{ij} \xi_j^*) = 0 ; \forall i = [1, m],$$

$$\xi_{j}^{*}(-\sigma_{j} + \sum_{i=1}^{m} \alpha_{ij}\lambda_{i}^{*}) = 0 ; \forall j = [1, n].$$

Следствие: метод "малых вариаций".

Пусть
$$F^* = \sum_{j=1}^n \sigma_j \xi_j^* = \sum_{i=1}^m eta_i \lambda_i^*,$$

тогда
$$\frac{\partial \boldsymbol{F}^*}{\partial \boldsymbol{\beta}_i} = \boldsymbol{\lambda}_i^*$$
 .

Или, приближенно,
$$\lambda_i^* \approx \frac{\Delta F^*}{\Delta \beta_i}$$
.

Свойства пары взаимодвойственных задач ЛП

Основное соотношение двойственности и условия дополняющей нежесткости являются базовыми свойствами взаимодвойственной пары задач. Кроме того, справедливы следующие утверждения.

Теорема 1.2. Если x^* и Λ^* допустимые элементы пары взаимодвойственных задач такие, что

$$\sum_{j=1}^n \sigma_j \xi_j^* = \sum_{i=1}^m \beta_i \lambda_i^* ,$$

то x^* и Λ^* – решения этих задач.

Для пары взаимодвойственных задач имеет место следующая (подтверждаемая примерами) альтернатива:

а) обе задачи имеют решение: прямая

Найти максимум $F=2\xi_1+3\xi_2$ по $\{\xi_1,\xi_2\}\in E^2$, при условиях:

$$\xi_i \ge 0$$
, $j = [1, 2]$,
 $\xi_1 + 2\xi_2 \le 6$,
 $2\xi_1 + \xi_2 \le 6$

с решением $\xi_1^* = 2, \xi_2^* = 2, F^* = 10$

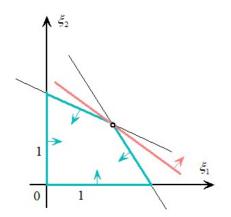
И

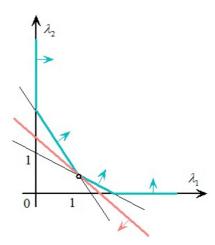
двойственная

Найти минимум $G=6\lambda_1+6\lambda_2$ по $\{\lambda_1,\lambda_2\}\in E^2$, при условиях:

$$\begin{split} &\lambda_i \geq 0 \;, \quad j = [1,2], \\ &\lambda_1 + 2\lambda_2 \geq 2, \\ &2\lambda_1 + \lambda_2 \geq 3 \end{split}$$

с решением $\lambda_1^* = \frac{4}{3}, \lambda_2^* = \frac{1}{3}, G^* = 10.$





б) обе задачи несовместны:

найти максимум $F=\xi_1+3\xi_2$ по $\{\xi_1,\xi_2\}\in E^2$, при условиях:

$$\xi_i \ge 0$$
, $j = [1,2]$, $\xi_1 - \xi_2 \le 3$, $-\xi_1 + \xi_2 \le -4$.

И

найти минимум $G=3\lambda_1-4\lambda_2$ по $\{\lambda_1,\lambda_2\}\in E^2$, при условиях:

$$\begin{aligned} &\lambda_i \geq 0 \;, \quad j = [1,2], \\ &\lambda_1 - \lambda_2 \geq 1, \\ &-\lambda_1 + \lambda_2 \geq 3. \end{aligned}$$

в) одна задача совместна, а другая – нет:

найти максимум $F=\xi_1$ по $\{\xi_1,\xi_2\}\in E^2$, при условиях:

$$\xi_i \ge 0, \quad j = [1, 2],$$

 $\xi_1 - \xi_2 \le 1,$

с неограниченым целевым функционалом на множестве допустимых состояний

И

найти минимум $G=\lambda_1$ no $\{\lambda_1\}\in E^1$,

при условиях:

$$\lambda_1 \ge 0$$
, $\lambda_1 \ge 1$, $-\lambda_1 \ge 0$,

которая несовместна.

Обратите внимание, что согласно определению 4.1.1 первая из задач в пункте в) решений не имеет. Этот факт обобщает

Единственность и переопределенность решений взаимодвойственных задач **ЛП**

Рассмотренные выше утверждения справедливы как случаев единственного, так и неединственного решения задачи ЛП.

Следующая теорема позволяет делать заключение о числе этих решений.

Теорема Если одна из взаимодвойственных задач имеет *единственное*, 1.3. переопределенное решение, то другая задача имеет *неединственное* решение.

Отметим также, что возможен случай, когда обе задачи взаимодвойственной пары имеют неединственное решение. Проиллюстрируем два последних утверждения примерами.

а) прямая задача переопределена, а двойственная имеет неединственное решение:

найти максимум $F = 2\xi_1 + \xi_2$ при условиях:

$$F = 2\xi_1 + 3\xi_2$$
 no $\{\xi_1, \xi_2\} \in E^2$,

$$\xi_i \ge 0$$
, $j = [1, 2]$,
 $\xi_1 + 2\xi_2 \le 6$,
 $2\xi_1 + \xi_2 \le 3$

с решением
$$\xi_1^* = 0, \xi_2^* = 3, F^* = 9$$

В этом случае на элементе x^* активными являются ограничения

$$\xi_1 \ge 0$$
, $\xi_1 + 2\xi_2 \le 6$, $2\xi_1 + \xi_2 \le 3$.

а, поскольку их число $3>\dim(E^2)=2$, то это решение *переопределенное*,

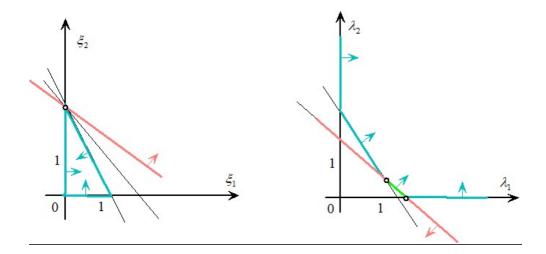
И

двойственная задача с неединственным решением

найти минимум $G=6\lambda_1+3\lambda_2$ по $\{\lambda_1,\lambda_2\}\in E^2$, при условиях:

$$\begin{split} &\lambda_i \geq 0 \;, \quad j = [1,2], \\ &\lambda_1 + 2\lambda_2 \geq 2, \\ &2\lambda_1 + \lambda_2 \geq 3 \end{split}$$

с решением $\lambda_1^* = t$; $t \in [0, \frac{4}{3}]$; $\lambda_2^* = 3 - 2t$; $G^* = 9$.



б) обе задачи взаимодвойственной пары имеют неединственное решение:

найти максимум $F=\xi_1+2\xi_2$ по $\{\xi_1,\xi_2\}\in E^2$, при условиях:

$$\xi_i \ge 0$$
, $j = [1, 2]$,
 $2\xi_1 + 4\xi_2 \le 4$,
 $3\xi_1 + 6\xi_2 \le 6$,

с решением
$$\xi_1^*=t\,;\,t\in[0,\!2];\quad \xi_2^*=1-\frac{1}{2}t\,;\quad F^*=2.$$

и двойственная задача

найти минимум $G=4\lambda_1+6\lambda_2$ по $\{\lambda_1,\lambda_2\}\in E^2$, при условиях:

$$\lambda_i \ge 0$$
, $j = [1, 2]$,
 $2\lambda_1 + 3\lambda_2 \ge 1$,
 $4\lambda_1 + 6\lambda_2 \ge 2$,

с решением
$$\lambda_1^* = t$$
; $t \in [0, \frac{1}{2}]$; $\lambda_2^* = \frac{1}{3} - \frac{2}{3}t$; $G^* = 2$.

Общая постановка задачи параметрического программирования

Пусть $x \in E^n$ – вектор переменных и $u \in E^k$ – вектор параметров являются элементами конечномерных евклидовых пространств соответственно с координат-

ными представлениями
$$\|x\| = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \dots \\ \xi_n \end{pmatrix}$$
 и $\|u\| = \begin{pmatrix} v_1 \\ v_2 \\ \dots \\ v_k \end{pmatrix}$.

Рассмотрим следующую задачу, которую принято называть *задачей параметрического программирования*:

найти
$$\max_x F(x,u)$$

$$npu \ ycловиях: \ f_i(x,u) \leq 0, \quad i = [1,m] \ ,$$

и пусть x_u^* есть решение задачи (1.3) для некоторого фиксированного $u \in \Omega \subseteq E^k$.

Любую задачу, в формулировке которой используется x_u^* , будем называть задачей в пространстве параметров или параметрической задачей верхнего уровня.

Например, задачу

$$\max_{u} F(x_{u}^{*}, u)$$
 при условии $u \in \Omega$. (1.4)

В отличие от задач этого типа, задачу (1.3) будем называть задачей "нижнего уровня".

Свойства решений задач параметрического программирования

Пусть \boldsymbol{x}_u^* есть решение задачи (1.3) для фиксированного u , а задача верхнего уровня сформулирована в виде

$$\max_{u} F(x_{u}^{*}, u) \quad u \in \Omega,$$

где F(x,u) – некоторая функция, зависящая как от $x \in E^n$, так и от $u \in E^k$.

Как постановка, так и процедура решения задачи (1.4) *могут* в значительной степени осложняться следующими специфическими свойствами зависимости \boldsymbol{x}_{u}^{*} .

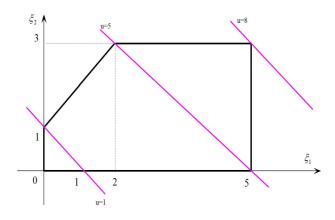
- 1. Практической *невозможностью* (за исключением, быть может, некоторых тривиальных случаев) аналитического решения задачи нижнего уровня (1.3), а, значит, также и постановки, исследования и решения в явном виде задачи верхнего уровня (1.4).
- 2. Несовпадением в общем случае области определения зависимости x_u^* и множества Ω , поскольку система условий задачи нижнего уровня (1)–(2) может оказаться *противоречивой* для некоторых $u \in \Omega \subseteq E^l$.
- 3. Heфункциональностью (неоднозначностью) зависимости x_u^* для тех $u \in \Omega \subseteq E^l$, при которых задача нижнего уровня (1.3) имеет решение, но He eduhcmbehoe.
- 4. Негладкостью зависимости x_u^* в силу того, что условия задачи "нижнего уровня" (1.3) могут содержать ограничения типа неравенство. Более того, даже существование непрерывных производных у функций f(x,u) и $y_s(x,u)$ достаточно высокого порядка не гарантирует необходимой гладкости (а иногда даже и непрерывности) зависимости x_u^* и, следовательно, входящих в формулировку задачи верхнего уровня, условий.

Причины, порождающие подобные свойства можно проиллюстрировать следующим примером.

Рассмотрим следующую задачу параметрического программирования:

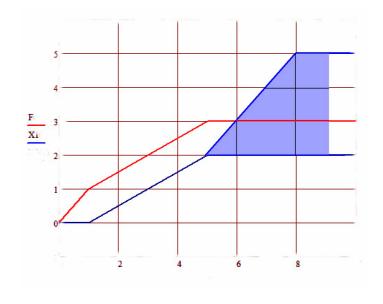
$$\forall u \in \mathbf{R}$$
 максимизировать по $x = \left\| \frac{\xi_1}{\xi_2} \right\| \in E^2$ функцию $F = \xi_2$

при условиях:
$$0 \le \xi_1 \le 5$$
, $0 \le \xi_2 \le 3$, $\xi_1 - \xi_2 \ge -1$, $\xi_1 + \xi_2 \le u$.



Решение этой задачи представляется зависимостями

и	F_u^*	ξ* _{1u}	ξ _{2u}
$(-\infty,0)$	не сущ.	не сущ	не сущ
[0, 1)	и	0	и
[1, 5)	$\frac{u+1}{2}$	$\frac{u-1}{2}$	$\frac{u+1}{2}$
[5, 8]	3	$\forall [2, u-3]$	3
$(8, +\infty)$	3	∀[2, 5]	3



В качестве иллюстрации приведем еще один пример.

1. Задача *нижнего уровня* - задача линейного программирования с нелинейно входящими в ее условие параметрами, для которой $\|x\| = \left\| \frac{\xi_1}{\xi_2} \right\|$ и

$$\|u\| = \| \mathbf{v}_1 \|_{\mathbf{v}_2} -$$
 координатные представления векторов $x \in E^2$ и $u \in E^2$.

Требуется решить задачу:

найти
$$\max_{x} 2\xi_1 + 3\xi_2$$

при условиях:
$$\xi_1 \geq 0, \, \xi_2 \geq 0,$$

$$\xi_1 + \nu_1 \xi_2 \leq 6,$$

$$2\xi_1 + \xi_2 \leq \nu_2,$$

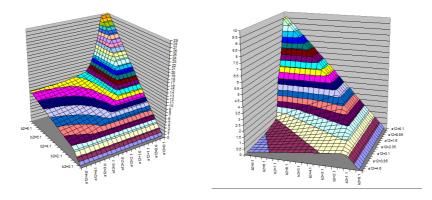
решение которой представляется зависимостями $\,\xi_{\nu_1,\nu_2}^*\,$ и $\,\xi_{\nu_1,\nu_2}^*$.

2. Задача верхнего уровня:

$$\max_{u} 2\xi_{1,v_1,v_2}^* + 3\xi_{2v_1,v_2}^*$$

при условиях:

$$0.1 \le v_1 \le 5$$
, $0.1 \le v_2 \le 10$.



На этих рисунках приведены графические представления зависимостей соответственно

$$2\xi_{1,\nu_{1},\nu_{2}}^{*} + 3\xi_{2\nu_{1},\nu_{2}}^{*}$$
 и $\xi_{2\nu_{1},\nu_{2}}^{*}$

от $\{\mathbf{v}_1,\mathbf{v}_2\}$ – компонент вектора $u\in\Omega$, которые позволяют заключить, что данные зависимости непрерывные, нелинейные, невыпуклые и не дифференцируемые для всех $u \in \Omega$, а задача нижнего уровня имеет неединственное решение.