3. Элементы выпуклого анализа

3.1. Проекция элемента на подмножество

Определение Проекцией элемента $x^0 \in E^n$ на выпуклое подмно-3.1.1 $\mathcal{L} = \mathcal{L} = \mathbb{R}$ называется элемент $\overline{x} \in \Omega$ такой, $\mathbf{L} = \mathbf{L} = \mathbf{L}$

Неотрицательное число $ho \equiv \inf_{x \in \Omega} \left| x^0 - x \right|$ называется расстоянием от элемента x^0 до подмножества Ω .

Основные свойства проекций и расстояний от элемента до подмножества в E^n могут быть сформулированы в виде следующих теорем.

Теорема Для любого выпуклого замкнутого множества $\Omega \subset E^n$ 3.1.1 и любого элемента $x^0 \in E^n$ существует единственный элемент $\overline{x} \in \Omega$, являющийся проекцией x^0 на Ω .

Доказательство.

Докажем существование проекции.

Если $x^0 \in \Omega$, то $\overline{x} = x^0$ и $\rho = 0$.

Пусть теперь $x^0 \notin \Omega$ и существует число $\rho = \inf_{x \in \Omega} \left| x^0 - x \right|$, тогда по определению точной нижней грани существует ограниченная последовательность элементов $\{x_k\} \subset \Omega$ такая, что

$$\lim_{k\to\infty} \left| x^0 - x_k \right| = \rho.$$

Например, для которой $\rho \le |x^0 - x_k| \le \rho + \frac{1}{k}$.

Но, согласно теореме Больцано–Вейерштрасса, из ограниченной последовательности можно выделить сходящуюся подпоследовательность $\{x_{k_i}\}\subset\Omega$.

Если при этом $\lim_{i\to\infty}x_{k_i}=\overline{x}$, то в силу замкнутости Ω элемент $\overline{x}\in\Omega$, и для него справедливо равенство $\rho=\left|x^0-\overline{x}\right|$. То есть, \overline{x} – проекция x^0 на Ω .

Покажем теперь, что проекция единственна.

Без ограничения общности будем считать, что $x^0 = o$, и предположим противное: пусть в Ω существуют неравные элементы \overline{x}_1 и \overline{x}_2 , для которых $|\overline{x}_1| = |\overline{x}_2| = \rho$.

Рассмотрим два элемента: $y = \frac{\overline{x}_1 + \overline{x}_2}{2}$ и $z = \frac{\overline{x}_1 - \overline{x}_2}{2}$, для

которых очевидны равенства $\overline{x}_1 = y + z$ и (y,z) = 0. Тогда

$$\rho^2 = (\bar{x}_1, \bar{x}_1) = (y + z, y + z) = |y|^2 + |z|^2$$

и, следовательно, $|y|^2 < \rho^2$, поскольку согласно сделанному предположению $z \neq o$.

Наконец, учитывая, что в силу выпуклости Ω элемент

$$y = \frac{\overline{x}_1 + \overline{x}_2}{2} \in \Omega,$$

приходим к противоречию с определением 3.1.1, что и доказывает единственность проекции.

Теорема 3.1.2 Для того чтобы элемент $\overline{x}\in\Omega$ являлся проекцией элемента x^0 на выпуклое замкнутое множество Ω , необходимо и достаточно, чтобы $\forall x\in\Omega$ выполнялось неравенство

$$(x-\overline{x},x^0-\overline{x})\leq 0.$$

Доказательство.

Докажем необходимость.

Пусть
$$\overline{x} \in \Omega$$
 – проекция x^0 на Ω , тогда элемент $y = \alpha x + (1 - \alpha)\overline{x} \in \Omega$, $\forall x \in \Omega$ при $\forall \alpha \in [0,1]$.

Для этого элемента справедлива оценка

$$\begin{aligned} \left| x^{0} - y \right|^{2} &= \left| x^{0} - (\alpha x + (1 - \alpha)\overline{x}) \right|^{2} = \\ &= \left| (x^{0} - \overline{x}) - \alpha (x - \overline{x}) \right|^{2} = \\ &= \left| x^{0} - \overline{x} \right|^{2} - 2\alpha (x^{0} - \overline{x}, x - \overline{x}) + \alpha^{2} \left| x - \overline{x} \right|^{2}. \end{aligned}$$

В силу определения 3.1.1 $\left|x^{0}-y\right|^{2} \geq \left|x^{0}-\overline{x}\right|^{2}$. А это в свою очередь означает, что

$$-2\alpha(x^{0}-\overline{x},x-\overline{x})+\alpha^{2}|x-\overline{x}|^{2}\geq 0 \qquad \forall \alpha\in[0,1].$$

При $\alpha = 0$ $y = \overline{x}$ т.е. неравенство $\left| x^0 - y \right|^2 \ge \left| x^0 - \overline{x} \right|^2$. очевидно верное.

Пусть $\alpha \in (0,1]$, тогда имеем

$$(x^0 - \overline{x}, x - \overline{x}) \le \frac{\alpha}{2} |x - \overline{x}|^2 \forall \alpha \in (0,1].$$

Здесь левая часть неравенства от α не зависит, а правая стремится к нулю при $\alpha \to +0$.

Поскольку нестрогие неравенства сохраняются при предельном переходе, то получаем при фиксированном $x \in \Omega$

$$(x^0 - \overline{x}, x - \overline{x}) \le 0$$
 _{или} $(x - \overline{x}, x^0 - \overline{x}) \le 0$.

.

Докажем достаточность.

Пусть $\forall x \in \Omega$ справедливо неравенство

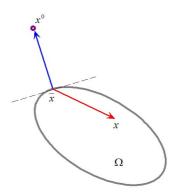
$$(x-\overline{x},x^0-\overline{x})\leq 0.$$

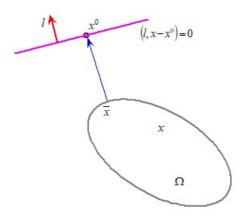
Тогда справедлива оценка

$$|x-x^{0}|^{2} = |(x-\overline{x})-(x^{0}-\overline{x})|^{2} =$$

$$= |x-\overline{x}|^{2} - 2(x-\overline{x},x^{0}-\overline{x}) + |x^{0}-\overline{x}|^{2} \ge |x^{0}-\overline{x}|^{2}.$$

Следовательно, элемент $\overline{x} \in \Omega$ является проекцией элемента x^0 на Ω .





3.2. Условия отделимости выпуклых подмножеств

Определение 3.2.1.

Непустое множество Ω , образованное из элементов линейного пространства Λ , называется *подпространством* этого линейного пространства, если для любых $x,y\in\Omega$ и любого числа λ

- 1) $x+y\in\Omega$,
- 2) $\lambda x \in \Omega$.

Определение 3.2.2.

Множество Γ , образованное из элементов вида $x+x_0$, где x_0 есть произвольный фиксированный элемент линейного пространства Λ , а x — любой элемент некоторого подпространства $\Omega \subset \Lambda$, называется гиперплоскостью (или линейным многообразием) в линейном пространстве Λ .

При построении и обосновании различных методов исследования математических моделей в E^n важную роль играют следующие теоремы.

Теорема 3.2.1 Пусть $\Omega \subset E^n$ — выпуклое замкнутое множество. Тогда $\forall x^0 \notin \overline{\Omega}$ существует *отделяющая* гиперплоскость $(l, x - x^0) = 0 \quad \mathbf{c} \quad l \neq o$ такая, что $(l, x - x^0) < 0 \quad \forall x \in \Omega$

Доказательство.

Пусть элемент \overline{x} является проекцией элемента x^0 на Ω . Выберем гиперплоскость $(l,x-x^0)=0$ с ненулевым (в силу $\forall x^0 \not\in \overline{\Omega}$) $l=x^0-\overline{x}$, тогда, используя утверждение теоремы 3.1.2 и равенство

$$x-x^0=(x-\overline{x})-l$$

получаем оценку

$$(l, x - x^{0}) = = (x^{0} - \overline{x}, x - x^{0}) = (x^{0} - \overline{x}, x - \overline{x}) - (l, l) < 0,$$

так как $l \neq o$.

Теорема Пусть $\Omega \subset E^n$ — выпуклое замкнутое множество. То-3.2.2 гда для любого граничного элемента \overline{x} этого множества существует *опорная* гиперплоскость

$$(l,x-\overline{x})=0 \qquad {\bf c} \quad l\neq o$$
 такая, что
$$(l,x-\overline{x})\leq 0 \qquad \forall x\in\Omega \ .$$

Доказательство.

Согласно определению граничного элемента множества $\Omega \subset E^n$ существует последовательность элементов $\{x_{(k)}\}$ таких, что:

1°.
$$x_{(k)} \notin \overline{\Omega} \quad \forall k ;$$

2°. $\lim_{k \to \infty} x_{(k)} = \overline{x} ;$

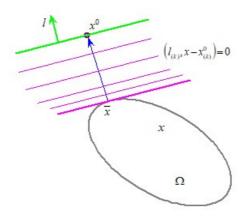
По теореме 3.2.1 для каждого k существует гиперплоскость $(l_{(k)}, x - x_{(k)}^0) = 0$ такая, что:

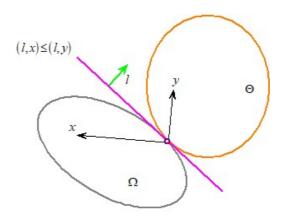
$$egin{aligned} 3\,^{\circ}. & l_{(k)} = & \dfrac{x_{(k)} - \overline{x}}{\left|x_{(k)} - \overline{x}\right|}\,; \ & 4\,^{\circ}. & (l_{(k)}, x - x_{(k)}^0) < 0 \quad orall x \in \Omega\,. \ & \text{откуда следует, что} \ & (l_{(k)}, x - x_{(k)}^0) \leq 0 \quad orall x \in \Omega \end{aligned}$$

В силу предположения о сходимости $\{x_{(k)}\}$ будет сходиться и $\{l_{(k)}\}$. Пусть $\lim_{k\to\infty}l_{(k)}=l$, тогда, принимая во внимание, что предельный переход не нарушает нестрогих неравенств (теорема "o двух мили-ционерах"), из $\lim_{k\to\infty}(l_{(k)},x-x_{(k)}^0)\leq 0$ получаем

$$(l, x - \overline{x}) \le 0 \quad \forall x \in \Omega,$$

то есть, гиперплоскость $(l, x - \overline{x}) = 0$ – опорная.





Из курса выпуклого анализа известно, что:

- 1° . Если $\Omega \subset E^n$ выпуклое множество, то множества $\overline{\Omega}$ и $\operatorname{int}\Omega$ также выпуклы.
- 2°. Если $\Omega \subset E^n$ и $\Theta \subset E^n$ выпуклые множества, то множества

$$\Omega\pm\Theta=\{x\in E^n: x=x_1\pm x_2 \ ,\, \forall x_1\in\Omega \ ,\, \forall x_2\in\Theta \ \}$$
 также выпуклы.

Теорема 3.2.3 (О разделяющей гиперплоскости) Пусть $\Omega \subset E^n$ и $\Theta \subset E^n$ – выпуклые множества такие, что любая внутренняя точка Ω не принадлежит Θ . Тогда существует разделяющая множества Ω и Θ гиперплоскость

$$(l, y - x) = 0$$
 c $l \neq o$

такая, что

$$(l, y - x) \le 0$$
, $\forall x \in \Omega$ и $\forall y \in \Theta$.

Доказательство.

Рассмотрим множество $\Theta-\operatorname{int}\Omega$, состоящее из элементов вида y-x, $\forall x\in\operatorname{int}\Omega$ и $\forall y\in\Theta$. Это множество выпуклое и не содержит по условию теоремы нулевого элемента.

Тогда в силу теорем 3.2.1 и 3.2.2 для каждого его внешнего элемента y^0-x^0 существует гиперплоскость

$$(l,(y-x)-(y^0-x^0))=0$$
 c $l \neq 0$

такая, что $(l,(y-x)-(y^0-x^0)) \le 0$.

Поскольку элемент $y^0 - x^0 = o$ для рассматриваемого множества является внешним, то будет справедлива оценка $(l, y - x) \le 0$.

Наконец, включив путем соответствующего предельного перехода (не нарушающего нестрогие неравенства) в рассмотрение граничные точки множества Ω , получаем утверждение теоремы.

3.3. Теорема Фаркаша

Теорема 3.3.1 (Фредгольма). Для того чтобы система ||A|||x|| = ||b|| была совместной, необходимо и достаточно, чтобы *каждое* решение ||y|| *сопряженной* системы

$$||A||^{\mathsf{T}}||y|| = ||o||$$

удовлетворяло условию

$$\|b\|^{\mathsf{T}}\|y\|=0$$
.

Доказательство необходимости.

Пусть система уравнений (6.6.1) совместна, то есть для каждого ее решения $\|x\|$ справедливо равенство $\|b\| = \|A\| \|x\|$.

Тогда, вычисляя произведение $\parallel b \parallel^{\mathsf{T}} \parallel y \parallel$ в предположении, что $\parallel A \parallel^{\mathsf{T}} \parallel y \parallel = \parallel o \parallel$, получаем $\parallel b \parallel^{\mathsf{T}} \parallel y \parallel = (\parallel A \parallel \parallel x \parallel)^{\mathsf{T}} \parallel y \parallel = \parallel x \parallel^{\mathsf{T}} \parallel A \parallel^{\mathsf{T}} \parallel y \parallel = \parallel x \parallel^{\mathsf{T}} \parallel o \parallel = 0$.

Доказательство достаточности.

Пусть $\|b\|^T\|y\| = 0$ для *любого* решения системы линейных уравнений $\|A\|^T\|y\| = \|o\|$. Тогда общие решения систем линейных уравнений

$$||A|^{T}||y| = ||o|| \quad \text{if} \quad \begin{cases} ||A|^{T}||y| = ||o||, \\ ||b||^{T}||y| = 0 \end{cases}$$

совпадают, и для этих систем максимальное число линейно независимых решений одинаково. Поэтому, согласно известным теоремам из курса линейной алгебры,

$$m - \operatorname{rg} \left\| A \right\|^{\operatorname{T}} = m - \operatorname{rg} \left\| \frac{A}{b} \right\|^{\operatorname{T}}$$
 или $\operatorname{rg} \left\| A \right\|^{\operatorname{T}} = \operatorname{rg} \left\| \frac{A}{b} \right\|^{\operatorname{T}}$,

но поскольку ранг матрицы не меняется при ее транспонировании, то имеет место равенство $\operatorname{rg} \| A \| = \operatorname{rg} \| A \| b \|$, означающее в силу теоремы Кронекера-Капелли совместность системы линейных уравнений $\| A \| \| x \| = \| b \|$.

Теорема 3.3.2. (Фаркаша)

Для того чтобы $\|A\|\|x\| = \|b\|$ – система m линейных уравнений с n неизвестными имела n неизвестными имела n неизвестными имела n необчастное решение (то есть, решение $\|x^0\| \ge \|o\|$), необходимо и достаточно, чтобы $\|y\|$ – каждое частное решение сопряженной системы линейных неравенств

$$||A||^{\mathsf{T}}||y|| \leq ||o||$$

- удовлетворяло условию

$$\|b\|^{\mathsf{T}}\|y\| \leq 0.$$

Доказательство.

Докажем необходимость.

Пусть система линейных уравнений $\|A\|\|x\| = \|b\|$ имеет "неотрицательное" частное решение, то есть, покомпонентно удовлетворяющее условию $\|x^0\| \ge \|o\|$. Покажем, что в этом случае для каждого решения системы линейных неравенств

$$||A|^{\mathsf{T}}||y|| \leq ||o||$$

выполнено условие $\|b\|^{\mathsf{T}}\|y\| \leq 0$. Действительно,

$$||b|^{\mathsf{T}}||y|| = (||A|||x^{0}||)^{\mathsf{T}}||y|| = ||x^{0}||^{\mathsf{T}}(||A||^{\mathsf{T}}||y||) \le 0,$$

поскольку n -компонентная строка с неотрицательными элементами $\|x^0\|^{\mathsf{T}}$ умножается справа на n-компонентный столбец $\|A\|^{\mathsf{T}}\|y\|$ с неположительными элементами.

Докажем достаточность.

Пусть матрица $\|A\|$ задает линейное отображение вида $\widehat{A}:E^n \to E^m$, столбцы $\|b\|,\|y\|$ задают элементы $b,y \in E^m$, а столбцы $\|x\|,\|x^0\|$ — элементы $x,x^0 \in E^n$. Обозначим через Ω множество всех элементов $v \in E^m$ таких, что $v = \widehat{A}x \ \forall x \geq o$.

Оно *очевидно* (?) выпуклое. Как показать, что из $\begin{cases} v_1 \in \Omega, \\ v_2 \in \Omega \end{cases}$ следует $\lambda v_1 + (1-\lambda)v_2 \in \Omega \quad \forall \lambda \in [0,\!1] \ ?$

Если для *каждого* решения системы линейных неравенств $\|A\|^T\|y\| \leq \|o\|$ выполнено условие $\|b\|^T\|y\| \leq 0$ и при этом $b \in \Omega$, то достаточность доказана.

Допустим, что $b \notin \Omega$.

Покажем, что в этом случае *не для каждого* решения сопряженной системы линейных неравенств $\|A\|^T\|y\| \leq \|o\|$ выполнено условие $\|b\|^T\|y\| \leq 0$.

Действительно, пусть элемент $u \in \Omega \subset E^m$ – проекция b на Ω .

Заметим, что здесь (без доказательства) мы предположили замкнутость Ω , которая гарантирует существование проекции.

Тогда для элемента y' = b - u справедливы оценки:

- 1°. В силу теоремы 3.2.1 (об отделяющей гиперплоскости) $(y',v-b)<0 \ \forall v\in\Omega\ ,$ но поскольку $o\in\Omega$, то , в том числе , и (y',b)>0 ;
- 2°. По теореме 3.1.2 $(v-u,b-u) \le 0 \ \forall v \in \Omega$ или $(v-u,y') \le 0 \ \forall v \in \Omega$.

Очевидно (?), что элемент v+u также будет принадлежать множеству Ω . Тогда из последнего неравенства получаем $(v,y')\leq 0 \ \, \forall v\in \Omega$. Откуда следует оценка

$$(v, v') = (Ax, v') = (x, A^+v') \le 0 \quad \forall x \ge 0$$

В силу произвольности $\|x\| \ge \|o\|$ имеем $\|\widehat{A}^+y'\| \le \|o\|$. То есть из $b \notin \Omega$ вытекает (?) существование y' такого, что

$$\begin{cases} ||A|^{T} ||y'|| \leq ||o||, \\ ||b||^{T} ||y'|| > 0, \end{cases}$$

поскольку $\left\|\widehat{A}^{+}\right\|_{e} = \left\|A\right\|^{T}$.